City of Belleville

Sidney St. Corridor Improvements Class EA Study

Traffic Analysis Report

FINAL

February 2015

C14-0026

City of Belleville

Sidney St. Corridor Improvements Class EA Study

FINAL

February 2015

C14-0026

PREPARED BY:
Jaime Garcia, P.Eng., Ph.D.
Project Manager, Transportation
VERIFIED BY:
Stephen Keen, P.Eng.
Project Director, Transportation

Table of Contents

1.	Inti	roduction	1
2.	Ba	ckground	1
	2.1	Study Area	1
3.	Exi	sting Transportation Network	2
	3.1	Road Network	2
		3.1.1 Sidney Street	2
		3.1.2 Bell Boulevard Intersection	2
		3.1.3 Tracey Street/Tracey Park Drive Intersection	3
	3.2	Active Transportation Network	3
4.	Exi	sting (2014) Traffic Operational Analysis	4
	4.1	Existing Intersection Operations	5
5.	Fut	ture (2031) Traffic Operational Analysis – Do Nothing Scenario	8
	5.1	Future Road Network Improvements Included in Do Nothing Scenario	8
	5.2	Future Intersection Operation Scenarios	9
		5.2.1 Scenario 1 - Commercial Development Traffic Included in EMME Model	9
		5.2.2 Scenario 2 - Commercial Development Traffic Added to EMME Model	11
6.		ture (2031) Traffic Operational Analysis – Proposed	15
	_	Future (2031) Traffic Operational Analysis – Weekend Peak Hour	
7.	Sui	mmary of Findings	26
	7.1	Active Transportation Network	26
	7.2	2014 Existing Traffic Operations	26
	7.3	2031 Future Traffic Operations – Do Nothing Scenario	26
	7.4	The northbound and southbound directions.2031 Future Traffic Operational Analysis – Proposed Improvements	27
8.	Pro	posed Intersection Configuration	28

List of Appendices

Appendix A: Received Data

Appendix B: Synchro Outputs

Appendix C: 2031 Calculated Volumes

1. Introduction

CIMA, in partnership with Golder Associates, was retained to complete a Municipal Class Environmental Assessment (EA) for intersection improvements at Sidney Street and Bell Boulevard, and Sidney Street and Tracey Street/Tracey Park Drive, as well as corridor improvements along Sidney Street between the two identified intersections. These improvements are necessary to accommodate current and future traffic needs, including the City's plan to increase capacity for more industrial, residential and commercial development in Belleville, and the potential development of a large commercial development on the east side of Sidney Street between Bell Boulevard and Tracy Street.

The purpose of this traffic analysis report is to document the existing roadway geometry, traffic volumes and intersection operations, review the current connectivity of walkways and cycling facilities and develop a plan for the connectivity of active transportation modes along and crossing the corridor, and to calculate and analyse the expected future traffic volumes and operations in the study area. These items will be used to support the need and justification for the Class EA.

2. Background

The City has prepared a Transportation Master Plan to guide development of the transportation network over the next 20 years. This plan will guide the provision of transportation infrastructure and services for a more balanced transportation system that offers a range of travel choices to meet existing and future needs.

Volume and turning movements at the Sidney Street/Bell Boulevard intersection have increased significantly since Bell Boulevard was extended west to Wallbridge Loyalist Road. Both Bell Boulevard and Sidney Street are arterial roads that carry high volumes of traffic and are in place to link different areas of the City. Therefore, intersection improvements are necessary and supported by the City's Official Plan, which states that the carrying capacity of adjacent roads (i.e., Sidney Street) should be sufficient to accommodate the anticipated traffic generated by a proposed development (i.e., Bell Boulevard extension) and anticipated background traffic growth. Also, this intersection lacks dedicated left and right turn lanes for some movements and has insufficient capacity to maintain traffic flow. Thus, intersection improvements are imperative to minimize traffic congestion and improve vehicular/pedestrian safety.

2.1 Study Area

The study area for this assignment includes Sidney Street from its intersection with Bell Boulevard in the north to its intersection with Tracey Street in the south. The study area is highlighted in **Figure 1**.

Figure 1 - Study Area

3. Existing Transportation Network

The existing transportation network in the study area is made up of two separate yet equally important components; the roadway network and the active transportation network. Details on the existing networks are provided in this section.

3.1 Road Network

3.1.1 Sidney Street

Sidney Street is an undivided two-way four-lane arterial roadway running north/south through the west end of the city. Between Bell Boulevard and Tracey Street, Sidney Street consists of two lanes for vehicular traffic in each direction. There are numerous residential driveways with direct access to Sidney Street in the southern portion of the study area, two substantial commercial accesses on the west side near Bell Boulevard and open space along the majority of the eastern side of Sidney Street. North of the study area, there are several commercial entrances that provide direct access to Sidney Street.

3.1.2 Bell Boulevard Intersection

The intersection of Sidney Street and Bell Boulevard operates under traffic signal control and consists of the following lane arrangement:

- + Northbound shared left/through lane and a dedicated right-turn lane;
- + Southbound dedicated left-turn lane and shared through/right lane;

Westbound dedicated dual left-turn lanes, a through lane and a dedicated right-turn lane.

The intersection provides painted crosswalks on the south and east legs with pedestrian signals and pushbuttons for these crossings. There are sidewalk connections provided:

- + On the southwest corner of the intersection heading south, which terminates just south of the intersection
- + On the southeast corner of the intersection heading south and east; and
- + On the northeast corner of the intersection heading east.

Traffic signal timings plans received from the City and turning movement counts (TMCs), collected by TSA, are included in **Appendix A**.

3.1.3 Tracey Street/Tracey Park Drive Intersection

The offset (by approximately 13 m centreline to centreline) intersection of Sidney Street and Tracey Street (east leg)/Tracey Park Drive (west leg) operates under traffic signal control and consists of the following lane arrangement:

- Northbound shared left/through lane and shared through/right-turn lane;
- + Southbound shared left/through lane and shared through/right-turn lane;
- + Eastbound shared left/through/right-turn lane; and
- + Westbound shared left/through/right-turn lane.

The intersection provides painted crosswalks with pedestrian signals on all legs and pushbuttons for the east/west crossings. There are sidewalk connections provided on each corner of the intersection for travel in all directions.

The intersection offset requires that the traffic signal operates with a "split phase" (i.e. the eastbound and westbound directions receive the right-of-way separately, which is different than a typical signal timing). Although this reduces conflicts for left-turning vehicles and therefore improves safety, it also causes longer delays, since each direction needs its own signal phase. Traffic signal timings plans received from the City and TMCs, collected by TSA, are included in **Appendix A**.

3.2 Active Transportation Network

The active transportation network along Sidney Street consists of a concrete sidewalk running along the east side and a concrete sidewalk that transitions to a worn dirt path approximately 110 metres north of Tracey Park Drive on the west side. There are currently no bicycle facilities on Sidney Street. Sidewalk connections at the intersection are noted in Section 3.1.2 and 3.1.3, respectively.

4. Existing (2014) Traffic Operational Analysis

TMCs for the study area intersections were counted on July 9, 2014 and July 10, 2014 by TSA. CIMA utilized these TMCs, in conjunction with the traffic signal timing plans provided by the City, to undertake the existing traffic operational analysis. Synchro/SimTraffic v8 was utilized in this analysis to produce results consistent with the methodologies contained in the Highway Capacity Manual (HCM 2000).¹

For signalized intersections, the analysis focuses on performance measures such as intersection level of service (LOS), volume-to-capacity (v/c) ratios, control delay and 95th queue.

The 95th-percentile queue is defined to be the queue length (in vehicles) that has only a 5-percent probability of being exceeded during the analysis time period, while LOS is a qualitative measure of operational performance and is based on control delay. The LOS criteria for a signalized intersection are summarized in the following table:

LOS	Control Delay (seconds/vehicle)	Operational Characteristics ²
Α	0-10	Almost no signal phase is fully utilized by traffic. Very seldom does any
		vehicle wait longer than one signal cycle. The approach appears open,
		turning movements are easily made and drivers have virtually
		complete freedom of operation.
В	>10-20	An occasional signal cycle is fully utilized and several phases approach
		full use. Many drivers begin to feel somewhat restricted within
		platoons of vehicles approaching the intersection.
С	>20-35	The operation is stable though with more frequent fully utilized signal
		phases. Drivers feel more restricted and occasionally may have to wait
		more than one signal cycle, and queues may develop behind turning
		vehicles.
D	>35-55	The motorist experiences increasing restriction and instability of flow.
		There are substantial delays to approaching vehicles during short
		peaks within the peak period, but there are enough cycles with lower

¹ HCM 2000 methodology was used instead of the most current HCM 2010 because the latter requires strict NEMA signal phasing. Given the intersection offset at Sidney Street & Tracey Street, strict NEMA phasing is not possible.

Canadian Capacity Guide for Signalized Intersections, 2008, pg.4-100

CIMA+ // Partners in excellence

LOS	Control Delay (seconds/vehicle)	Operational Characteristics ²
		demand to permit occasional clearance of developing queues and
		prevent excessive backups.
E	>55-80	Capacity is reached. There are long queues of vehicles waiting
		upstream of the intersection and delays to vehicles may extend to
		several signal cycles.
F	>80	Saturation occurs, with vehicle demand exceeding the available
		capacity.

LOS "A" is represented by a control delay of less than 10 seconds per vehicle (referred to as freeflow operating conditions). LOS "F" is represented by a control delay of more than 80 seconds per vehicle (referred to as restricted flow operating conditions). In determining the LOS performance for signalized intersections, the average control delay per vehicle is estimated for each lane group and is aggregated for each approach and the intersection as a whole.

4.1 Existing Intersection Operations

The results of the AM and PM peak hour operational analysis for the study area intersections are summarized in **Table 1** and **Table 2**, respectively.

Table 1 - 2014 AM Existing (Weekday) Traffic Operations Summary

Intersection	Approach	Movement	LOS	Delay	v/c	95 th Queue
	EB	L	В	18.7	0.13	27
	EB	T/TR	С	28.3	0.29	27
		L/L	В	19.1	0.21	25
Sidney St.	WB	Т	С	30.7	0.39	59
&		R	С	25.4	0.02	29
Bell Blvd.	NID	L/T	С	24.4	0.52	77
	NB	R	В	19.0	0.23	49
	0.0	L	С	30.2	0.22	33
	SB	T/R	D	36.2	0.56	67
011 01	EB	L/T/R	D	41.6	0.20	31
Sidney St.	WB	L/T/R	D	40.7	0.15	25
& Tracay St	NB	L/T T/R	D	40.8	0.75	62
Tracey St.	SB	L/T T/R	D	43.7	0.69	62

Table 2 – 2014 PM Existing (Weekday) Traffic Operations Summary

Intersection	Approach	Movement	LOS	Delay	v/c	95 th Queue
	ED	L	D	36.8	0.44	33
	EB	T/TR	D	42.4	0.44	132
		L/L	С	33.7	0.56	51
Sidney St.	WB	Т	D	48.8	0.65	94
&		R	D	35.2	0.06	41
Bell Blvd.	NID	L/T	С	29.9	0.65	110
	NB ·	R	С	20.6	0.30	91
	0.0	L	С	25.3	0.15	35
	SB	T/R	С	30.1	0.44	74
Sidney St.	EB	L/T/R	D	43.5	0.29	28

Intersection	Approach	Movement	LOS	Delay	v/c	95 th Queue
&	WB	L/T/R	D	46.5	0.42	37
Tracey St.	NB	L/T T/R	F	125.5	1.16	83
	SB	L/T T/R	F	90.4	1.05	105

The results of the AM and PM peak hour operational analysis indicate that:

- + During the AM peak hour, both study area intersections operate with acceptable v/c ratios and queues and LOS of "D" or better;
- + During the PM peak hour, the Sidney Street & Bell Boulevard intersection operates with acceptable v/c ratios, increased queuing and LOS of "D" or better³;
 - Queues of 132 m (19 cars) and 110 m (16 cars) were calculated for the eastbound through and shared through/right-turn lanes and the northbound shared left/through lane, respectively, suggesting that there may be opportunities for improvement at the intersection; and
- + During the PM peak hour, the Sidney Street & Tracey Street intersection operates poorly with oversaturated v/c ratios, relatively high delay and LOS "F" for the northbound and southbound directions; a queue of 105 m (15 cars) for the southbound direction was calculated. These results suggest that there may be opportunities for improvement at the intersection.

Detailed Synchro/SimTraffic outputs are included in Appendix B.

³ Several municipalities in Ontario considers LOS D as the threshold for acceptable roadway performance and roads are considered over-capacity when the LOS falls below LOS D (i.e. Region of Peel and City of Quinte West)

C14-0026

5. Future (2031) Traffic Operational Analysis – Do Nothing Scenario

In order to calculate the future 2031 traffic volumes for the study area intersections, two separate methodologies were employed.

For the intersection of Sidney Street & Bell Boulevard, the following methodology was applied:

- + The City provided CIMA with EMME model outputs for 2011 AM peak hour and 2031 AM peak hour;
- + Growth factors were estimated for each approach from the EMME outputs by comparing the 2011 and 2031 volumes (growth factors range from 1.197 to 1.661 refer to **Appendix C** for details);
- + The growth factors were applied to the 2014 AM TMC for intersection entering and exiting volumes only;
- Turning movement volumes for the 2031 AM peak hour were then estimated through the Fratar trip distribution method (refer to Appendix C for details);
- + The 2031 PM volumes were then estimated by applying the same ratio between the AM and PM 2014 TMCs for each individual turning movement. For example:
 - 2014 AM eastbound left turn volume = 56 (July 9 count) and 57 (July 10 count);
 - 2014 PM eastbound left turn volume = 119 (July 9 count) and 106 (July 10 count);
 - PM/AM ratio = 119/56 = 2.13 (July 9 count) and 106/57 = 1.86 (July 10 count) → Adopted 2.0;
 - 2031 AM eastbound left turn volume (from FRATAR) = 82;
 - 2031 PM eastbound left turn volume = 82 x 2.0 = 164;
 - The procedure was repeated for each individual movement.

For the intersection of Sidney Street and Tracey Street/Tracey Park Drive, a growth factor of 1.2 was applied to the 2014 TMCs for both the AM and PM peak hours. This growth factor was estimated based on the output volumes of the 2011 and 2031 EMME models for the north and south approaches⁴ of this intersection.

The resultant intersection volumes are included in **Appendix C**.

5.1 Future Road Network Improvements Included in Do Nothing Scenario

The City's Transportation Master Plan identified two improvements that are set to be completed before the 2031 horizon year. These improvements consist of:

+ Widening of Sidney Street from two to four lanes between Bell Boulevard and Millennium Parkway (over Highway 401); and

⁴ The EMME models did not provide sufficient volumes for the east and west approaches to allow the determination of a growth factor for these approaches.

+ Widening of Bell Boulevard from two to four lanes between Sidney Street and Wallbridge Loyalist Road.

These two improvements were included in the Synchro/SimTraffic model for the 2031 Do Nothing scenario.

5.2 Future Intersection Operation Scenarios

Two different scenarios were analyzed for the 2031 horizon year.

- + Scenario 1 In this scenario, traffic generated by the potential commercial development (included as part of the Appendices) to be located on the east side of Sidney Street between Bell Boulevard and Tracey Street was considered as already included in the 2031 EMME model outputs.
- + Scenario 2 In the second scenario, the commercial development traffic was added to the 2031 EMME volumes, with 25% of pass-by trips at the assumed Sidney Street access. This percentage is consistent with the Supermarket Land Use (850) as presented in the ITE Trip Generation Manual.

5.2.1 Scenario 1 - Commercial Development Traffic Included in EMME Model

The results of the AM and PM peak hour operational analysis for the study area intersections, for the assumption that traffic volumes generated by the potential commercial development are included in the EMME model outputs, are summarized in **Table 3** and **Table 4**, respectively.

Table 3 – 2031 AM Future Traffic Operations Summary (Scenario 1)

Intersection	Approach	Movement	LOS	Delay	v/c	95 th Queue
		L	С	20.8	0.27	26
	EB '	T/TR	С	26.5	0.36	43
		L/L	В	17.5	0.32	27
	WB	Т	С	34.5	0.69	88
Sidney St.		R	С	21.7	0.03	43
&		L/T	С	31.0	0.75	110
Bell Blvd.	NB	R	В	18.1	0.27	56
		L	С	27.7	0.29	31
	SB	T/TR	С	25.9	0.32	43
	Ov	erall	С	25.7	0.72	-

Intersection	Approach	Movement	LOS	Delay	v/c	95 th Queue
	EB	L/T/R	D	42.4	0.25	30
Sidney St.	WB	L/T/R	D	41.6	0.20	39
&	NB	L/T T/R	D	53.0	0.91	80
Tracey St.	SB	L/T T/R	Е	60.2	0.91	72
	Overall		D	54.6	0.75	-

Table 4 – 2031 PM Future Traffic Operations Summary (Scenario 1)

Intersection	Approach	Movement	LOS	Delay	v/c	95 th Queue
	5 0	L	F	168.1	1.17	54
	EB	T/TR	D	51.2	0.65	130
		L/L	D	38.9	0.79	484
	WB	Т	F	98.1	1.05	496
Sidney St.		R	С	34.5	0.19	101
&	NB	L/T	F	83.2	1.04	212
Bell Blvd.		R	С	24.2	0.41	154
	SB	L	С	32.2	0.32	35
		T/TR	С	29.3	0.34	54
	Ov	erall	E	60.1	1.09	-
	EB	L/T/R	Е	64.4	0.51	38
Sidney St.	WB	L/T/R	Е	71.5	0.67	55
&	NB	L/T T/R	F	196.2	1.32	125
Tracey St.	SB	L/T T/R	F	173.2	1.25	134
	Ov	erall	F	170.7	1.17	-

The results of the AM and PM peak hour operational analysis indicate that:

- During the AM peak hour, both intersections are expected to operate with increased v/c ratios and queuing and LOS of "E" or better;
 - The Sidney Street & Bell Boulevard intersection northbound and southbound directions are expected to be approaching capacity, which suggests a potential opportunity for improvement at the intersection;

C14-002

- + During the PM peak hour, both intersections are expected to operate poorly with several movements exhibiting oversaturated v/c ratios and LOS "F", suggesting potential opportunities for improvement at the intersection, specifically:
 - Bell Boulevard Intersection:
 - The eastbound left-turn lane;
 - The westbound through lane;
 - The northbound shared left/through lane;
 - Tracey Street intersection:
 - The northbound and southbound directions.

Detailed Synchro/SimTraffic outputs are included in **Appendix B**.

5.2.2 Scenario 2 - Commercial Development Traffic Added to EMME Model

Loblaw Companies Limited owns the land located on the east side of Sidney Street between Bell Boulevard and Tracey Street. For this scenario it was assumed that, by 2031, a commercial development (supermarket) would have been built, with direct access to Sidney Street. The store size is expected to be approximately 103,000 sq.ft.

For the purpose of this assignment and due to the unofficial status of the 2005 site plan provided as part of the background information of this assignment, the proposed right-in-right-out access and the signalized intersection at Bell Boulevard included as part of the 2005' site plan were not considered as part of our analysis prior to the first Public Information Centre and all traffic generated/attracted for this proposed development was allocated to the single access at Sidney Street.

Due to the limited information regarding potential origins and destinations of the trips generated by the development, trip distribution was assumed to have 50% of the trips originating from the north, turning left from Bell Boulevard onto Sidney Street, and 50% of the trips originating from the south, via Sidney Street.

Based on ITE's average trip generation rates and equations for Supermarket Land Use (850), this development would generate the following number of trips:

- + 218 entering trips and 133 exiting trips in the AM Peak Hour; and
- + 406 entering trips and 391 exiting trips in the PM Peak Hour.

It is important to note that the aforementioned number of trips are significant and will impact operational conditions at the intersection of Sidney Street and Bell Boulevard during peak hours.

The results of the AM and PM peak hour operational analysis for the study area intersections, for the assumption that traffic volumes generated by the potential commercial development are added to the EMME model outputs, are summarized in **Table 5** and **Table 6**, respectively.

Table 5 – 2031 AM Future Traffic Operations Summary (Scenario 2)

Intersection	Approach	Movement	LOS	Delay	v/c	95 th Queue
	-	L	С	20.8	0.27	27
	EB	T/TR	С	26.5	0.36	48
		L/L	В	19.1	0.47	43
	WB	Т	С	34.5	0.69	92
Sidney St.		R	С	21.7	0.03	40
&	NB	L/T	С	31.0	0.75	111
Bell Blvd.		R	В	18.8	0.32	74
		L	С	27.7	0.29	30
	SB	T/TR	С	25.9	0.32	48
	Ov	Overall		25.5	0.74	-
	EB	L/T/R	D	42.4	0.25	34
Sidney St.	WB	L/T/R	D	41.6	0.20	40
&	NB	L/T T/R	F	87.8	1.06	95
Tracey St.	SB	L/T T/R	F	87.8	1.04	77
	Ov	erall	F	82.9	0.86	-

Table 6 – 2031 PM Future Traffic Operations Summary (Scenario 2)

Intersection	Approach	Movement	LOS	Delay	v/c	95 th Queue
	ED	L	F	132.9	1.09	54
	EB	T/TR	D	47.3	0.69	106
		L/L	F	96.1	1.11	349
	WB	Т	F	105.5	1.09	392
Sidney St.		R	С	30.4	0.17	101
&		L/T	F	85.1	1.06	174
Bell Blvd.	NB	R	С	30.8	0.72	118
		L	С	30.2	0.33	25
	SB	T/TR	С	27.3	0.36	55
	Ov	erall	E	67.7	1.15	-
	EB	L/T/R	E	64.4	0.51	37
Sidney St.	WB	L/T/R	Е	71.5	0.67	69
&	NB	L/T T/R	F	323.8	1.61	240
Tracey St.	SB	L/T T/R	F	319.6	1.58	159
	Ov	erall	F	295.7	1.42	-

- + During the AM peak hour, the Sidney Street & Bell Boulevard intersection operates with acceptable v/c ratios, increased queuing and LOS of "C" or better.
- + During the AM peak hour, the Sidney Street & Tracey Street intersection operates poorly with oversaturated v/c ratios, relatively high delay, and LOS "F" for the northbound and southbound directions. These results suggest that there may be opportunities for improvement at the intersection, as noted in the next bullet.
- + During the PM peak hour, both intersections are expected to operate poorly with several movements exhibiting oversaturated v/c ratios and LOS "F", suggesting potential opportunities for improvement, specifically:
 - At the Bell Boulevard intersection:
 - The eastbound left-turn lane:
 - The westbound dual left and through lanes;
 - The northbound shared left/through lane;
 - At the Tracey Street intersection:
 - The northbound and southbound directions.
- It is advisable that, when a formal proposal for the development of the commercial area is presented for approval, the City requests a Traffic Impact Study that conducts a more detailed review of any potential access to the development and its expected effect on intersection operations at Sidney Street and Bell Boulevard. Providing an access to the development at the signalized intersection to the east of Sidney Street on Bell Boulevard has the potential to mitigate impacts on the Sidney Street & Bell Boulevard intersection, specifically for the westbound left and the northbound right movements, and should be considered as a condition of approval for future development of this site.

Detailed Synchro/SimTraffic outputs are included in **Appendix B**.

6. Future (2031) Traffic Operational Analysis – Proposed Improvements

To address the findings described in the previous sections, the following intersection improvements were included to the Synchro model:

- Realignment of Tracey Street/Tracey Park Drive, eliminating the intersection offset at Sidney Street (which in turn eliminates the need for a split phase and allowing the allocation of longer green intervals to Sidney Street);
- + Addition of one exclusive left turn lane in the northbound direction at the Sidney Street & Bell Boulevard intersection:
- + Addition of one exclusive right-turn lane in the southbound direction at the Sidney Street & Bell Boulevard intersection;
- Signalization of the potential Sidney Street access to the commercial development.

The analysis with the improvements was conducted only for the scenario with the commercial development traffic added to the EMME model outputs, as this represents the worst case scenario.

The results, summarized in **Table 7** and **Table 8**, indicate that both intersections are expected to operate well with acceptable v/c ratios and queues and LOS "C" or better in the AM Peak Hour, and LOS "D" or better in the PM Peak Hour.

Detailed Synchro/SimTraffic outputs are included in Appendix B.

Table 7 - 2031 AM Future Traffic Operations Summary (with Intersection Improvements)

Intersection	Approach	Movement	LOS	Delay	v/c	95 th Queue
	-	L	С	20.8	0.27	26
	EB	T/TR	С	26.5	0.36	41
		L/L	В	19.1	0.47	41
	WB	Т	С	34.5	0.69	83
		R	С	29		
Sidney St.		L	В	18.1	0.29	51
& Bell Blvd.	NB	Т	В	19.1	0.36	69
Bell Biva.		R	В	18.8	0.32	72
		L	С	26.7	0.26	23
	SB	T/T	С	25.2	0.26	39
		R	С	23.4	0.06	16
	Ov	erall	С	23.4	0.54	-
	EB	L/T/R	С	23.1	0.15	29
Sidney St.	WB	L/T/R	С	22.9	0.13	26
&	NB	L/T T/R	В	14.3	0.49	61
Tracey St.	SB	L/T T/R	В	13.4	0.49	50
	Ov	erall	В	14.9	0.38	-

Table 8 - 2031 PM Future Traffic Operations Summary (with Intersection Improvements)

Intersection	Approach	Movement	LOS	Delay	v/c	95 th Queue
		L	D	50.6	0.73	60
	EB	T/TR	D	42.2	0.53	91
		L/L	D	35.6	0.87	156
	WB	Т	D	49.6	0.84	157
		R	С	26.8	0.15	94
Sidney St.		L	С	31.0	0.42	49
& Bell Blvd.	NB	Т	D	36.2	0.60	155
Bell Bivu.		R	D	43.9	0.75	159
		L	D	40.7	0.31	47
	SB	T/T	D	38.4	0.34	70
		R	С	34.9	0.09	33
	Ov	erall	D	40.5	0.86	-
	EB	L/T/R	D	36.5	0.26	31
Sidney St.	WB	L/T/R	D	39.0	0.39	40
&	NB	L/T T/R	В	16.4	0.65	119
Tracey St.	SB	L/T T/R	В	14.7	0.78	72
	Ov	erall	В	17.9	0.68	-

To respond to comments received from public and the City during and after Public Information Centre No. 1 regarding further consideration of the "commercial" nature of the area surrounding the intersections of Sidney Street at Bell Boulevard and Tracey Street and the potential effect of the commercial plaza (Quinte Mall) located approximately 1.2 km east of the intersection of Sidney Street and Bell Boulevard, TMCs for the study area intersections were counted on November 13, 2014 and November 15, 2014 by TSA.

A comparison between the traffic counts (for all movements) at the intersections of Sidney Street with Bell Boulevard and Tracey Street presented in the **Table 9** provides the following results:

- + Total counts for July and November weekdays (Thursday) are very similar showing just a minor increase (between 2 to 3%) that may be attributed to normal variation between traffic volumes as well as seasonal factors.
- + Total counts collected during November (weekend) at the intersection of Sidney Street and Bell Boulevard are 10% higher than the total counts collected during July (weekday). Since not all the movements at the intersection were higher, it can be assumed that the effect of the commercial nature of the surrounding environment was captured by the counts conducted during the Saturday peak hour.
- + The previous assumptions are reinforced by the counts collected at the intersection of Sidney Street and Tracey Street in which only the Westbound right turn movement shows a significant difference between July and November (weekday) and November (weekend).

Table 9: Traffic Movements Comparison - Weekday and Weekend

					Cidnou	Stroot 9	Poll Pou	lovard					
2014 (counted)		Sidney Street & Bell Boulevard											
	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	TOTAL
Thursday, July	106	311	140	360	274	75	99	300	414	43	261	56	2439
Thursday, November	108	357	148	316	329	135	87	283	358	53	249	62	2485
Saturday, November	109	366	85	364	357	151	84	266	532	74	234	85	2707
Factor (Thu/Jul - Sat/Nov)	1.03	1.18	0.61	1.01	1.30	2.01	0.85	0.89	1.29	1.72	0.90	1.52	
2014 (counted)					Sidney	/ Street 8	Tracey S	Street					
Thursday, July	41	21	21	43	23	49	19	722	42	63	631	66	1741
Thursday, November	44	25	22	52	23	52	26	686	57	83	664	64	1798
Saturday, November	39	16	5	43	19	78	13	739	24	53	639	41	1709
Factor (Thu/Jul - Sat/Nov)	0.95	0.76	0.24	1.00	0.83	1.59	0.68	1.02	0.57	0.84	1.01	0.62	

Traffic volumes were also collected during the month of December 2012, however a significant variation was found to exist in these counts (approximately 45% additional vehicles) when compared to the July and November counts.

These differences may be the result of several factors including:

- + The potential effect of the Holiday shopping season and the proximity of the Quinte Mall, located approximately 1.2 km east of the intersection of Sidney Street and Bell Boulevard;
- + Road closures conducted in and around the intersection of Sidney Street and Bell Boulevard that may temporary changed the traffic patterns; and/or
- + Other seasonal variations in traffic patterns.

Since the City of Belleville does not collect traffic volumes on a general basis along this portion of Bell Boulevard, seasonal adjustment factors that can be directly applicable to the specific conditions of the study area (urban, highly commercial) are not available. Instead, the following source of information was considered to estimate the highly seasonal effect of the regional shopping centre located east of the study area:

 Daily and Monthly variation in Shopping Centre Traffic provided by the Institute of Transportation Engineers' Trip Generation Manual, 9th Edition

Typical traffic volumes generated during the months of July and December by Shopping Centres are quite different due to the increase of traffic generated during the holiday season. Based on this information, it can be assumed that the road section counts conducted in December 2012 were highly affected by the proximity of Quinte Mall to the intersection under study, as well as the relatively limited access to this shopping area from the west. Because of this variation, this traffic volume data was not included in the study as the July and November data were much more consistent with each other.

To acknowledge the variation on certain movements observed between the July (weekday) and the November (weekend) peak hours at both intersections, the factors presented in **Table 9** were used to modify Synchro/SimTraffic v8 model in order to represent the future (2031) traffic conditions (**see Table 10**) during a Saturday peak hour with the addition of one left turn lane in the eastbound direction at the Sidney Street & Bell Blvd. intersection but maintaining a single access to the proposed commercial development at Sidney Street.

Due to the very high estimated eastbound left turns for the future 2031 traffic conditions, the addition of this additional left turn lane in the eastbound direction at the Sidney Street & Bell Boulevard intersection is recommended to meet LOS targets.

Table 10: Estimated 2031 Traffic Movements - Saturday Peak

2024 (astimated)					Sidney	/ Street &	Bell Bou	levard				
2031 (estimated)	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Saturday Peak Hour	169	407	97	699	694	286	120	364	861	108	289	172
2031 (estimated)	Sidney Street & Tracey Street											
Saturday Peak Hour	49	17	5	59	31	96	18	1066	28	59	942	36

The results, summarized in **Table 11**, indicate that both intersections are expected to operate with acceptable v/c ratios and queues and LOS "D" or better in the Saturday Peak Hour, excluding the northbound through/right turn movement which is expected to operate with a significant higher v/c ratio. 2031 forecasted traffic operations during weekdays (based on November 2014 counts) are presented in Table 12 for comparison purposes.

Table 11: 2031 Saturday Future Traffic Operations Summary (with Additional Intersection Improvements)

Intersection	Approach	Movement	LOS	Delay	v/c	95 th Queue
		L/L	D	39.7	0.51	32
	EB	T/TR	D	49.0	0.63	78
		L/L	С	32.6	0.82	94
	WB	T/TR	D	40.3	0.79	138
Sidney St.		L	С	29.5	0.34	57
&	NB	Т	С	34.2	0.54	147
Bell Blvd.		R	D	54.7	0.99	52
		L	D	43.6	0.46	64
	SB .	T/T	D	36.2	0.29	49
		R	С	34.2	0.13	31
	Ov	erall	D	41.7	0.99	-
	EB	L/T/R	С	34.0	0.21	28
Sidney St.	WB	L/T/R	D	38.2	0.42	70
&	NB	L/T T/R	В	17.2	0.64	143
Tracey St.	SB	L/T T/R	В	19.6	0.74	107
	Ov	С	20.4	0.65	-	

Table 12: 2031 Weekday Future Traffic Operations Summary (with Additional Intersection Improvements)

Intersection	Approach	Movement	LOS	Delay	v/c	95 th Queue
	-	L/L	С	22.9	0.38	23
	EB ·	T/TR	С	32.8	0.60	67
	MD	L/L	С	21.2	0.74	50
	WB -	T/TR	С	28.7	0.73	94
Sidney St.		L	С	27.2	0.42	56
&	NB	Т	С	32.8	0.66	132
Bell Blvd.		R	С	22.4	0.71	113
		L	D	40.7	0.45	51
	SB	T/T	С	34.6	0.43	77
		R	С	30.9	0.09	23
	Ov	erall	С	28.1	0.79	-
	EB	L/T/R	С	34.2	0.33	37
Sidney St.	WB	L/T/R	D	38.0	0.50	53
&	NB	L/T T/R	В	14.1	0.66	154
Tracey St.	SB	L/T T/R	С	21.2	0.86	97
	Ov	erall	В	19.8	0.78	-

It should be noted that although the results of this analysis indicates that, from an operation perspective, a continuous left turn lane along Sidney Street is not required, from a safety perspective, the addition of this infrastructure improvement may be of benefit and it may be recommended to evaluate it as part of the design process.

As per existing conditions, vehicles on Sidney Street are required to stop in a shared left turn/through lane while they wait for a gap in traffic to undertake a left-turn manoeuvre. This can pose a safety concern as it may contribute to rear-end collisions due to an unexpected stopped vehicle in the shared through lane.

By implementing a continuous left turn lane along Sidney Street, the opportunity for left-turning vehicles to move out of the through lane can drastically reduce the chance of rear end collisions. Additionally, the capacity of the road is increased as stopped vehicles do not hamper the progress of through vehicles along the road section.

CIMA+ // Partners in excellence

6.1.1 Future (2031) Traffic Operational Analysis - Consideration for Additional Access to Proposed Commercial Development

Prior to the second Public Information Centre, the Engineering and Development Services Department of the City of Belleville acknowledged that although the Site Plan provided in 2005 by Loblaw Companies Limited has no approved status, any future commercial development to be allocated at the intersection of Sydney Street and Bell Boulevard would likely include the provision of an additional access along Bell Boulevard.

In accordance, the original assumption regarding the distribution of the trips generated by the development was modified as follow:

- + 50% of the entering and exiting trips generated by the commercial development were reallocated to an additional access on Bell Boulevard:
- + The remaining 50% of the trips were assumed to originate from the south, via Sidney Street and were assumed to exit the development as follows:
 - 40% towards the south on Sidney Street;
 - 10% towards the north on Sidney Street and then turning right on Bell Boulevard.

The change in turning movement volumes, as well as the resulting volumes, are summarized in **Table 13** and **Figure 2**.

Table 13: Estimated 2031 Traffic Movements Considering Additional Access to Commercial Development - Saturday Peak

					01.1							
Catandari Baali Harri					Sidney	/ Street &	Bell Bou	levard				
Saturday Peak Hour	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Original Volumes	169	407	97	699	694	286	120	364	861	108	289	172
Volume Reduction	-	-	-	-203	-	-	-	-	-157	-	-	-
Resulting Volumes	169	407	97	496	694	286	120	364	704	108	289	172
Sidney Street & Private Access												
Original Volumes	-	-	-	195	-	196	-	975	203	203	919	-
Volume Reduction	-	-	-	-39	-	-157	-	-	-	-203	-	-
Resulting Volumes	-	-	-	156	-	39	-	975	203	0	919	-
			:	Sidney St	reet & Tra	acey Stree	et					
Original Volumes	49	17	5	59	31	96	18	1066	28	59	942	36
Volume Reduction	-	-	-	-	-	-	-	-	-	-	-39	-
Resulting Volumes	49	17	5	59	31	96	18	1066	28	59	903	36

Figure 2 - Volume Reduction Considering Alternative Access

This scenario was evaluated with and without a northbound right turn channelization, and the results are summarized in **Table 14** and **Table 15**.

Table 14:2031 Saturday Future Traffic Operations Summary Considering Additional Access on Bell Boulevard

Intersection	Approach	Movement	LOS	Delay	v/c	95 th Queue
		L/L	D	39.7	0.51	41
	EB	T/TR	D	49.0	0.63	80
		L/L	С	24.9	0.58	75
	WB	T/TR	D	40.3	0.79	125
Sidney St.		L	С	28.4	0.34	57
&	NB	Т	С	31.4	0.54	99
Bell Blvd.		R	С	22.0	0.80	95
		L	D	43.6	0.46	46
	SB	T/T	D	36.2	0.29	59
		R	С	34.2	0.13	27
	Ov	erall	С	34.4	0.84	-
	EB	L/T/R	С	34.0	0.21	31
Sidney St.	WB	L/T/R	D	38.2	0.42	57
&	NB	L/T T/R	В	17.2	0.64	90
Tracey St.	SB	L/T T/R	В	18.8	0.72	90
	Ov	Overall			0.64	-

Table 15:2031 Saturday Future Traffic Operations Summary Considering Additional Access on Bell Boulevard and Northbound Right Turn Channelization

Intersection	Approach	Movement	LOS	Delay	v/c	95 th Queue
	-	L/L	D	39.7	0.51	43
	EB	T/TR	D	49.0	0.63	84
	5	L/L	С	24.9	0.58	69
	WB	T/TR	D	40.3	0.79	120
Sidney St.		L	С	28.4	0.34	52
&	NB	Т	С	31.4	0.54	108
Bell Blvd.		R	D	46.5	0.79	110
		L	D	43.6	0.46	51
	SB	T/T	D	36.2	0.29	52
		R	С	34.2	0.13	27
	Ov	erall	D	38.9	0.81	-
	EB	L/T/R	С	34.0	0.21	29
Sidney St.	WB	L/T/R	D	38.2	0.42	72
&	NB	L/T T/R	В	17.2	0.64	120
Tracey St.	SB	L/T T/R	В	18.8	0.72	85
	Ov	erall	С	20.0	0.64	-

With the volume reduction resulting from the presence of a second access on Bell Boulevard, the volume to capacity ratio for the northbound right-turn decreases from 0.99 to 0.80, which is an acceptable operational performance. The option with a northbound right-turn channelization presents longer delays than the option with the right lane being an exclusive right-turn lane. The channelization increases delay for the northbound right-turn movement by 24 seconds. The reason for this increase is that the channelization operates with a yield control, while the exclusive right-turn lane can take advantage of an exclusive green indication which overlaps with the westbound left turn movement. Another disadvantage of the channelization is the angle at which vehicles are positioned when trying to access Bell Boulevard: while the right turn lane allows drivers to look west at a 90-degree angle, the channelization would impose a greater, more uncomfortable angle on drivers, which is less safe than the 90-degree angle.

7. Summary of Findings

The following summarizes the findings of this traffic analysis report:

7.1 Active Transportation Network

The sidewalk along the west side of Sidney Street continues north from Tracey Park Drive for approximately 110 m where it transitions to a worn dirt path.

7.2 2014 Existing Traffic Operations

- + During the AM peak hour, both study area intersections operate with acceptable v/c ratios and queues and LOS of "D" or better;
- During the PM peak hour, the Sidney Street & Bell Boulevard intersection operates with acceptable v/c ratios, increased queuing and LOS of "D" or better;
 - Queues of 132 m (19 cars) and 110 m (16 cars) were calculated for the eastbound through and shared through/right-turn lanes and the northbound shared left/through lane, respectively, suggesting that there may be opportunities for improvement at the intersection; and
- + During the PM peak hour, the Sidney Street & Tracey Street intersection operates poorly with oversaturated v/c ratios, relatively high delay and LOS "F" for the northbound and southbound directions; a queue of 105 m (15 cars) for the southbound direction was calculated. These results suggest that there may be opportunities for improvement at the intersection.

7.3 2031 Future Traffic Operations – Do Nothing Scenario

- + During the AM peak hour, the Sidney Street & Bell Boulevard intersection operates with acceptable v/c ratios, increased queuing and LOS of "C" or better.
- + During the AM peak hour, the Sidney Street & Tracey Street intersection operates poorly with oversaturated v/c ratios, relatively high delay, and LOS "F" for the northbound and southbound directions. These results suggest that there may be opportunities for improvement, as noted in the next bullet.
- + During the PM peak hour, both intersections are expected to operate poorly with several movements exhibiting oversaturated v/c ratios and LOS "F", suggesting a potential opportunities for improvement, specifically:
 - At the Bell Boulevard intersection:
 - The eastbound left-turn lane;
 - The westbound dual left and through lanes;
 - The northbound shared left/through lane;
 - At the Tracey Street intersection:
 - The northbound and southbound directions.

7.4 2031 Future Traffic Operational Analysis – Proposed Improvements

- With the implementation of intersection improvements, both intersections are expected to operate with acceptable v/c ratios and queues and LOS "D" or better in the Saturday Peak Hour. For the Weekday Peak Hour, both intersections are expected to operate well with acceptable v/c ratios and queues and LOS "C" or better in the AM Peak Hour, and LOS "D" or better in the PM Peak Hour.
- + The proposed intersection improvements include:
 - Realignment of Tracey Street/Tracey Park Drive, eliminating the intersection offset at Sidney Street;
 - Addition of one exclusive left turn lane in the northbound direction at the Sidney Street & Bell Boulevard intersection:
 - Addition of one exclusive right-turn lane in the southbound direction at the Sidney Street & Bell Boulevard intersection;
 - Addition of one left turn lane in the eastbound direction at the Sidney Street & Bell Boulevard intersection;
 - Modification of the existing exclusive right turn lane in the westbound direction at the Sidney Street & Bell Boulevard intersection to a through/right lane; and
 - Future signalization of the potential Sidney Street access to the commercial development.
- + It will be advisable that, when a formal proposal for the development of the commercial area is presented for approval, the City will request a Traffic Impact Study that conducts a more detailed review of any potential access to the development, or potential connection to the signals on Bell Boulevard east of Sidney Street, and its effect on intersection operations at Sidney Street and Bell Boulevard.
- + It is also recommended that the addition of a continuous left turn lane along Sidney Street between Bell Boulevard and Tracy Street may be evaluated as part of the design process. The results of this analysis indicates that, from a traffic capacity perspective, a continuous left turn lane along Sidney Street is not required but would be beneficial; however, from a safety perspective, the addition of this infrastructure improvement would reduce the chances of rear end collisions between through and left-turning vehicles on Sidney Street, including at the intersection with Tracey Street/Tracey Park Drive.
- + As an alternative to a northbound right-turn lane or a channelized right-turn onto Bell Boulevard, the City may want to investigate the use of a dedicated northbound right-turn lane from an operational perspective. This option would eliminate the chance of vehicles in the right lane proceeding north through the intersection or blocking vehicles that intend to turn right, andit provides greater capacity than a channelized right turn lane. It also mirrors the lane configuration on the north side of the intersection, improving driver expectations and lane continuity.

8. Proposed Intersection Configuration

Figure 3 illustrates the proposed lane configuration for the improved intersections in 2031, including the improvements listed in the City's Transportation Master Plan and the ones resulting from the operational analysis.

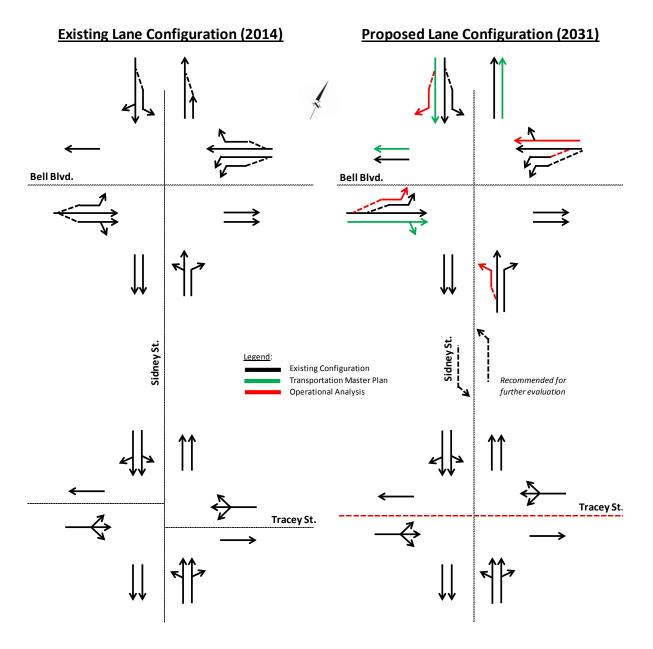


Figure 3 - Proposed 2031 Intersection Configuration

Appendix A: Received Data

Bell Boulevard & Sidney Street

Morning Peak Diagram Specified Period One Hour Peak From: 7:30:00 **From:** 9:30:00 To: 10:30:00 To: 10:30:00 Weather conditions: Municipality: Belleville Clear Site #: 0000003301 Intersection: Person(s) who counted: Bell Boulevard & Sidney Street TFR File #: Count date: 9-Jul-2014 ** Signalized Intersection ** Major Road: Bell Boulevard runs W/E North Leg Total: 569 Heavys 0 Heavys 0 East Leg Total: 939 7 North Entering: 303 Trucks 3 0 Trucks 4 East Entering: 374 North Peds: Cars 45 195 54 294 Cars 262 East Peds: 10 \mathbb{X} Peds Cross: Totals 48 200 55 Totals 266 Peds Cross: \bowtie Sidney Street Trucks Heavys Totals Heavys Trucks Cars Totals Cars 20 281 305 23 0 24 160 11 4 175 169 2 175 Bell Boulevard 352 6 Heavys Trucks Cars **Totals** Bell Boulevard 0 2 54 56 3 188 199 Trucks Heavys Totals 0 5 84 89 Cars 326 546 565 Sidney Street \mathbb{X} Peds Cross: \bowtie Peds Cross: Cars 448 Cars 76 185 304 565 West Peds: 0 Trucks 13 Trucks 6 3 10 South Peds: 2 4 West Entering: 344 Heavys 3 Heavys 0 4 South Entering: 579 West Leg Total: 649 Totals 82 South Leg Total: 1043 Totals 464

Comments

Bell Boulevard & Sidney Street

Afternoon Peak Diagram Specified Period One Hour Peak From: 15:30:00 From: 15:45:00 To: 18:30:00 To: 16:45:00 Weather conditions: Municipality: Belleville Clear Site #: 0000003301 Intersection: Person(s) who counted: Bell Boulevard & Sidney Street TFR File #: Count date: 9-Jul-2014 ** Signalized Intersection ** Major Road: Bell Boulevard runs W/E North Leg Total: 844 Heavys 0 1 Heavys 0 East Leg Total: 1417 11 North Entering: 355 Trucks 3 0 Trucks 9 East Entering: 708 North Peds: Cars 41 253 49 343 Cars 480 East Peds: 13 \mathbb{X} Peds Cross: Totals 44 261 50 Totals 489 Peds Cross: ⋈ Sidney Street Trucks Heavys Totals Heavys Trucks Cars Totals Cars 11 421 438 0 79 300 289 4 321 329 Bell Boulevard 689 Heavys Trucks Cars Totals Bell Boulevard 0 4 115 119 256 264 Trucks Heavys Totals 2 137 139 0 Cars 7 10 508 695 709 Sidney Street \mathbb{X} Peds Cross: \bowtie Peds Cross: Cars 711 Cars 91 286 390 767 West Peds: 3 Trucks 15 3 9 South Peds: 0 Trucks 1 5 2 4 West Entering: 522 Heavys 3 Heavys 2 South Entering: 780 West Leg Total: 960 Totals 94 South Leg Total: 1509 Totals 729 395

Comments

Total Count Diagram

Municipality: Belleville

Site #: 0000003301

Intersection: Bell Boulevard & Sidney Street

TFR File #:

Count date: 9-Jul-2014 Weather conditions:

Clear

Person(s) who counted:

** Signalized Intersection **

North Entering: 1775 North Peds:

Peds Cross:

North Leg Total: 3807

Heavys 5 2 Trucks 19 1 Cars 264 1196 254 Totals 288 1230 257

10 51 1714

Heavys 3 Trucks 50 Cars 1979 Totals 2032

Major Road: Bell Boulevard runs W/E

East Leg Total: 6346 East Entering: 2928 East Peds: 52 Peds Cross:

Heavys Trucks Cars Totals 33 98 1972 2103

Sidney Street

Cars Trucks Heavys Totals 280 283 1251 55 24 1330 1287 14 1315 2818

Bell Boulevard

Heavys	Trucks	Cars	Totals
2	23	435 1250	460
15	43		1308
3	24	526	553
20	90	2211	

Bell Boulevard

 \mathbb{X} Peds Cross: West Peds: 5 West Entering: 2321

West Leg Total: 4424

Cars 3009 Trucks 69 Heavys 20 Totals 3098

Sidney Street

Cars 457 1264 1821 3542 Trucks 24 17 66 25 Heavys 4 15 19 Totals 485 1289 1853

Trucks Heavys Totals 3325 3418

Peds Cross: \bowtie South Peds: 6 South Entering: 3627 South Leg Total: 6725

Bell Boulevard & Sidney StreetTraffic Count Summary

Intersection:	Bell Bou	levard 8	Sidney	Street	Count I	Date: 9-Jul-2014	4	Munic	cipality: Be	lleville			
			ach Tot								ach Tot		
	Include	es Cars, T	rucks, & H		-	North/South			Include	es Cars, T	rucks, & H		
Hour Ending	Left	Thru	Right	Grand Total	Total Peds	Total Approaches	Hou Endi		Left	Thru	Right	Grand Total	Total Peds
8:00:00	17	84	27	128	0	355	8:00		54	76	97	227	0
9:00:00	28	148	49	225	0	712	9:00		85	192	210	487	3
10:00:00 16:00:00	51 59	171 255	45 46	267 360	1		10:00 16:00		94	172 202	330 337	596 627	1 1
17:00:00	42	247	51	340	0 1		17:00		88 76	319	374	769	0
18:00:00	44	262	55	361	0		18:00		70	243	371	684	1
10.00.00		202	55	301	C	1040	10.00	J.00	70	240	0,1	001	
Totals:			273 ach Tota rucks, & H		2	5071 East/West			467 West	1204 t Appro es Cars, T	1719 ach Tota rucks, & H	3390 als eavys	6
Hour Ending	Left	Thru	Right	Grand Total	Total Peds	Total Approaches	Hou Endi		Left	Thru	Right	Grand Total	Total Peds
8:00:00	51	91	8	150	0	275	8:00	-	17	70	_	125	0
9:00:00	123	149	20	292	2	576			51	168	65	284	0
10:00:00	122	165	18	305	6		10:00		58	186	95	339	0
16:00:00	273	248	51	572	9		16:00		93	262	101	456	0
17:00:00	321	299	77	697	13		17:00		118	273	141	532	4
18:00:00	300	266	79	645	10	1074	18:00	0:00	93	251	85	429	1
Totals:	1190	1218	253	2661	40	4826 or Traffic Cr	oscin	a M	430	1210	525	2165	5
Haura Fr	dina	0.00				or traffic Cr		_	-		10.00		
Hours En Crossing		8:00 155	9:00 307	10:00 323	16:00 411			7:00 739	17:00 454	18:00 387	18:00 660		
Side	values.	100	J07	323	711			, 53		307			

Morning Peak Diagram Specified Period One Hour Peak From: 7:30:00 **From:** 9:30:00 To: 10:30:00 To: 10:30:00 Weather conditions: Municipality: Belleville Clear Site #: 0000003301 Intersection: Person(s) who counted: Bell Boulevard & Sidney Street TFR File #: Count date: 10-Jul-2014 ** Signalized Intersection ** Major Road: Bell Boulevard runs W/E North Leg Total: 534 Heavys 0 0 0 Heavys 1 East Leg Total: 967 6 North Entering: 268 Trucks 0 0 Trucks 9 East Entering: 372 North Peds: 0 Cars 32 183 47 262 Cars 256 East Peds: 9 \mathbb{X} Totals 32 Peds Cross: 189 47 Totals 266 Peds Cross: ⋈ Sidney Street Trucks Heavys Totals Heavys Trucks Cars Totals Cars 15 262 284 23 0 0 23 159 178 12 7 162 171 Bell Boulevard 344 Heavys Trucks Cars **Totals** Bell Boulevard 2 54 57 214 224 2 79 82 Trucks Heavys Totals 1 Cars 10 347 580 6 595 Sidney Street \mathbb{X} Peds Cross: \bowtie Peds Cross: Cars 424 Cars 71 179 319 569 West Peds: 0 Trucks 13 Trucks 3 7 3 13 South Peds: 2 Heavys 5 2 2 West Entering: 363 Heavys 0 South Entering: 584 West Leg Total: 647 Totals 74 South Leg Total: 1026 Totals 442 324

Afternoon Peak Diagram Specified Period One Hour Peak From: 15:30:00 From: 16:15:00 To: 18:30:00 To: 17:15:00 Weather conditions: Municipality: Belleville Clear Site #: 0000003301 Intersection: Person(s) who counted: Bell Boulevard & Sidney Street TFR File #: Count date: 10-Jul-2014 ** Signalized Intersection ** Major Road: Bell Boulevard runs W/E North Leg Total: 841 Heavys 1 0 Heavys 2 East Leg Total: 1477 3 Trucks 7 North Entering: 360 Trucks 1 2 0 East Entering: 709 North Peds: 0 Cars 54 259 43 356 Cars 472 East Peds: 10 \mathbb{X} Peds Cross: Totals 56 261 43 Totals 481 Peds Cross: ⋈ Sidney Street Trucks Heavys Totals Heavys Trucks Cars Totals Cars 418 429 75 0 0 75 274 268 3 3 355 360 Bell Boulevard 698 Heavys Trucks Cars Totals Bell Boulevard 2 103 106 306 311 139 140 Trucks Heavys Totals 0 1 Cars 757 548 6 768 Sidney Street \mathbb{X} Peds Cross: Cars 753 Peds Cross: \bowtie Cars 96 294 408 798 West Peds: 1 Trucks 5 Trucks 3 3 11 South Peds: 1 3 4 West Entering: 557 Heavys 3 Heavys 0 South Entering: 813 West Leg Total: 986 Totals 99 South Leg Total: 1574 Totals 761

Total Count Diagram

Municipality: Belleville

Site #: 0000003301

Intersection: Bell Boulevard & Sidney Street

TFR File #: 1

North Leg Total: 3845

North Entering: 1828

North Peds:

Peds Cross:

Peds Cross:

West Peds:

West Entering: 2413

West Leg Total: 4452

Count date: 10-Jul-2014

Weather conditions:

Clear

Person(s) who counted:

** Signalized Intersection **

Heavys 4

Trucks 10 31 2 43 Cars 252 1264 261 1777

0

Totals 266 1299 263

Major Road: Bell Boulevard runs W/E

Heavys 13
Trucks 50
Cars 1954

Cars 1954
Totals 2017

Heavys Trucks Cars Totals 32 63 1944 2039

Bell Boulevard

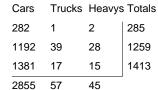
H	leavys	Trucks	Cars	Totals
7	•	18	396	421
1	8	45	1341	1404
5	;	25	558	588
3	80	88	2295	

 \mathbb{X}

3

Cars 3203

Trucks 73


Heavys 24

Totals 3300

Sidney Street

Bell Boulevard

Cars 3482

Sidney Str	eet				
	Cars	500	1276	1880	36

3656 58

21

13

17

1910

Peds Cross:
South Peds: 10
South Entering: 3735

South Leg Total: 7035

Trucks Heavys Totals

3577

Comments

Trucks 14

Heavys 0

Totals 514

Bell Boulevard & Sidney StreetTraffic Count Summary

Intersection:	Bell Bou	levard 8	Sidney	Street	Count I	Date: 10-Jul-20	14	Munic	cipality: Be	lleville			
			ach Tot								ach Tot		
	Include	es Cars, T	rucks, & H	-	T-1-1	North/South			Include	es Cars, T	rucks, & H		T-1-1
Hour Ending	Left	Thru	Right	Grand Total	Total Peds	Total Approaches	Hou Endi		Left	Thru	Right	Grand Total	Total Peds
8:00:00 9:00:00 10:00:00 16:00:00 17:00:00 18:00:00	12 31 43 53 43 54	88 186 191 216 239 276	33 40 45 37 53 44	133 257 279 306 335 374	0 2 0 0 0	955 1143	8:00 9:00 10:00 16:00 17:00 18:00	0:00 0:00 0:00 0:00	58 85 76 80 99	89 194 184 225 288 238	98 247 321 344 421 325	245 526 581 649 808 655	2 1 0 3 0 1
Totals:	236	1196	252	1684	2	5148			490	1218	1756	3464	7
			ach Tota						West	t Appro	ach Tota	als	
Hour	Include	es Cars, i	rucks, & H	Grand	Total	East/West Total	Hou	ır	include	es Cars, I	rucks, & H	Grand	Total
Ending	Left	Thru	Right	Total	Peds	Approaches	Endi	ng	Left	Thru	Right	Total	Peds
8:00:00	51	70	14	135	0	279	8:00		21	81	42	144	0
9:00:00	132	143	29	304	3	601	9:00		53	164		297	0
10:00:00 16:00:00	137 287	158 229	23 40	318 556	5 9		10:00 16:00		55 82	210 237	85 96	350 415	0 0
17:00:00	328	288	74	690	9		17:00		114	320	133	567	1
18:00:00	355	271	66	692	15		18:00		66	285	114	465	1
Totals:	1290	1159	246	2695	41	4933			391	1297	550	2238	2
	- 1					or Traffic Cr	ossin	g Ma				- 1	
Hours En Crossing		0:00 0	0:00	8:00 159	9:00 313		10	0:00 315	16:00 367	17:00 440	18:00 438		

Morning Peak Diagram Specified Period One Hour Peak From: 7:30:00 **From:** 9:30:00 To: 10:30:00 To: 10:30:00 Weather conditions: Municipality: Belleville Clear Site #: 0000003302 Intersection: Person(s) who counted: Sidney Street & Tracey Street / Trac TFR File #: Count date: 9-Jul-2014 ** Signalized Intersection ** Major Road: Sidney Street runs N/S North Leg Total: 1063 Heavys 0 0 3 Heavys 4 East Leg Total: 177 12 North Entering: 474 Trucks 0 12 0 Trucks 10 East Entering: North Peds: 15 Cars 27 372 60 459 Cars 575 East Peds: 5 \mathbb{X} Peds Cross: Totals 27 387 60 Totals 589 Peds Cross: ⋈ Sidney Street Trucks Heavys Totals Heavys Trucks Cars Totals Cars 47 47 2 46 0 0 8 0 23 Tracey Park Drive Heavys Trucks Cars **Totals Tracey Street** 0 0 32 32 0 13 13 18 Trucks Heavys Totals 0 0 18 Cars 100 0 100 Sidney Street \mathbb{X} Peds Cross: \bowtie Peds Cross: Cars 413 Cars 12 500 27 539 West Peds: 0 Trucks 12 Trucks 0 0 9 South Peds: 4 9 2 2 West Entering: 63 Heavys 3 Heavys 0 0 South Entering: 550 West Leg Total: 110 Totals 12 South Leg Total: 978 Totals 428 **Comments**

Afternoon Peak Diagram Specified Period One Hour Peak From: 15:30:00 From: 16:15:00 To: 18:30:00 To: 17:15:00 Weather conditions: Municipality: Belleville Clear Site #: 0000003302 Intersection: Person(s) who counted: Sidney Street & Tracey Street / Trac TFR File #: Count date: 9-Jul-2014 ** Signalized Intersection ** Major Road: Sidney Street runs N/S North Leg Total: 1508 Heavys 0 0 3 Heavys 2 East Leg Total: 247 2 16 North Entering: 718 Trucks 0 14 Trucks 9 East Entering: 130 Cars 48 North Peds: 14 595 56 699 Cars 779 East Peds: 13 \mathbb{X} Peds Cross: Totals 48 612 Totals 790 Peds Cross: ⋈ 58 Sidney Street Heavys Trucks Cars Totals Trucks Heavys Totals Cars 101 101 0 2 50 31 0 0 31 49 0 49 Tracey Park Drive 128 2 Heavys Trucks Cars **Totals Tracey Street** 0 0 42 42 0 18 18 18 Trucks Heavys Totals 0 0 18 Cars 78 115 0 117 Sidney Street \mathbb{X} Peds Cross: \bowtie Peds Cross: Cars 662 Cars 22 41 752 West Peds: 5 Trucks 14 Trucks 0 0 9 South Peds: 12 9 0 West Entering: 78 Heavys 3 Heavys 0 0 South Entering: 761 West Leg Total: 179 Totals 22 South Leg Total: 1440 Totals 679 **Comments**

Total Count Diagram

Municipality: Belleville

Site #: 0000003302

Intersection: Sidney Street & Tracey Street / Trac

TFR File #: 1

North Leg Total: 6842

North Entering: 3166

North Peds:

Peds Cross:

Count date: 9-Jul-2014

Weather conditions:

Clear

Person(s) who counted:

** Signalized Intersection **

107

⋈

Heavys 0 18 0 Trucks 2 63 3 Cars 231 2565 284

Totals 233 2646 287

Major Road: Sidney Street runs N/S

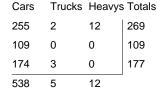
Heavys 17
Trucks 60
Cars 3599

Cars 3599
Totals 3676

Heavys Trucks Cars Totals
0 3 450 453

Tracey Park Drive

Heavys	Trucks	Cars	Totals
0	2	215	217
0	0	101	101
0	0	119	119
0	2	435	


18

68

3080

Sidney Street

Tracey Street

Sidney Street

\rangle		

Peds Cross:

West Peds: 36

West Entering: 437

West Leg Total: 890

 Cars
 2858

 Trucks
 66

 Heavys
 18

 Totals
 2942

 Cars
 110
 3129
 190
 3429

 Trucks
 1
 56
 3
 60

 Heavys
 0
 5
 0
 5

 Totals
 111
 3190
 193

Peds Cross:
South Peds: 79

South Entering: 3494

South Leg Total: 6436

Sidney Street & Tracey Street /Tracey Park Drive Traffic Count Summary

Intersection:	Sidney S	Street &	Tracey S	Street / T	ra Count [^{Date:} 9-Jul-2014	4	Munio	cipality: Be	lleville			
	North	n Appro	ach Tot	als							ach Tot		
l la	Include	es Cars, T	rucks, & H		Tatal	North/South			Include	es Cars, T	rucks, & H		Tatal
Hour Ending	Left	Thru	Right	Grand Total	Total Peds	Total Approaches	Hou Endir		Left	Thru	Right	Grand Total	Total Peds
8:00:00	20	151	13	184	10	398	8:00		9	187	18	214	16
9:00:00	29	306	21	356	15	809	9:00		9	424	20	453	6
10:00:00	42	326	27	395	16		10:00		12	538	28	578	3
16:00:00 17:00:00	59 65	515 608	52 51	626 724	24 22		16:00 17:00		18 26	526 695	42 37	586 758	31 15
18:00:00	59	544	51	654	14		18:00		26	601	33	660	7
10.00.00		9	0.			.011	16.66		20		56		•
Totals:			215 ach Tota		101	6188			100 West	2971 t Appro	178 ach Tota	3249 als	78
Hour	Include	es Cars, I	rucks, & H	eavys Grand	Total	East/West Total	Hou		Include	es Cars, I	rucks, & H	eavys Grand	Total
Ending	Left	Thru	Right	Total	Peds	Approaches	Endir		Left	Thru	Right	Total	Peds
8:00:00	13	7	20	40	7	78			19	5	14	38	4
9:00:00	17	8	32	57 71	0	126			39	17	13	69	2 0
10:00:00 16:00:00	14 33	5 19	52 53	71 105	5 10		10:00 16:00		37 33	12 13	18 23	67 69	13
17:00:00	46	26	44	116	10		17:00		42	20	22	84	9
18:00:00	35	34	49	118	10		18:00		33	22	18	73	13 9 7
Totals:	158	99	250	507	42	907			203	89	108	400	35
. otalo.	.00	55				or Traffic Cr	ossino	g Ma				.00	- 55
Hours En							•	_	•				
	idina:	0:00	0:00	8:00	9:00		10	00:	16:00	17:00	18:00		
Crossing		0:00	0:00	8:00 65	9:00 94		10):00 82	16:00 140	17:00 151	18:00 123		

Morning Peak Diagram Specified Period One Hour Peak From: 7:30:00 From: 8:30:00 To: 10:30:00 To: 9:30:00 Weather conditions: Municipality: Belleville Clear Site #: 0000003302 Intersection: Person(s) who counted: Sidney Street & Tracey Street / Trac TFR File #: Count date: 10-Jul-2014 ** Signalized Intersection ** Major Road: Sidney Street runs N/S North Leg Total: 1037 Heavys 0 0 5 Heavys 4 East Leg Total: 160 19 North Entering: 433 Trucks 0 19 0 Trucks 9 East Entering: 80 North Peds: Cars 25 361 23 409 Cars 591 East Peds: 9 \mathbb{X} Peds Cross: Totals 25 385 23 Totals 604 Peds Cross: ⋈ Sidney Street Heavys Trucks Cars Totals Trucks Heavys Totals Cars 47 47 0 2 45 12 0 0 12 23 0 23 Tracey Park Drive 78 2 Heavys Trucks Cars **Totals Tracey Street** 0 0 52 52 0 19 19 17 Trucks Heavys Totals 0 0 17 Cars 88 80 0 80 Sidney Street \mathbb{X} \bowtie Peds Cross: Cars 401 Cars 10 496 38 544 Peds Cross: West Peds: 2 Trucks 19 Trucks 0 0 9 South Peds: 6 2 2 West Entering: 88 Heavys 5 Heavys 0 0 South Entering: 555 West Leg Total: 135 South Leg Total: 980 Totals 425 Totals 10 Comments

Afternoon Peak Diagram Specified Period One Hour Peak From: 15:30:00 From: 16:15:00 To: 18:30:00 To: 17:15:00 Weather conditions: Municipality: Belleville Clear Site #: 0000003302 Intersection: Person(s) who counted: Sidney Street & Tracey Street / Trac TFR File #: Count date: 10-Jul-2014 ** Signalized Intersection ** Major Road: Sidney Street runs N/S North Leg Total: 1572 Heavys 0 0 2 Heavys 5 East Leg Total: 241 6 North Entering: 760 Trucks 0 0 Trucks 8 East Entering: 115 Cars 799 North Peds: 15 Cars 66 623 63 752 East Peds: 4 \mathbb{X} Peds Cross: Totals 66 631 63 Totals 812 Peds Cross: ⋈ Sidney Street Heavys Trucks Cars Totals Trucks Heavys Totals Cars 108 108 2 49 23 0 0 23 43 0 43 Tracey Park Drive 113 2 Heavys Trucks Cars **Totals Tracey Street** 0 0 41 41 0 21 21 Trucks Heavys Totals 0 0 21 Cars 83 126 0 126 Sidney Street \mathbb{X} Peds Cross: \bowtie Peds Cross: Cars 687 Cars 19 42 772 West Peds: 6 Trucks 6 Trucks 0 0 8 South Peds: 6 Heavys 2 3 West Entering: 83 Heavys 0 3 0 South Entering: 783 West Leg Total: 191 South Leg Total: 1478 Totals 695 Totals 19 Comments

Total Count Diagram

Municipality: Belleville

Site #: 0000003302

Intersection: Sidney Street & Tracey Street / Trac

TFR File #:

Count date: 10-Jul-2014 Weather conditions:

Clear

Person(s) who counted:

** Signalized Intersection **

North Leg Total: 7117 North Entering: 3346

North Peds: 83 Peds Cross:

Heavys 0 23 24 74 Trucks 2 68 4 Cars 243 2763 242 3248

Totals 245 2854 247 Major Road: Sidney Street runs N/S

Heavys 23 Trucks 55 Cars 3693

Totals 3771

East Entering: 531 East Peds: 38 \mathbb{Z} Peds Cross:

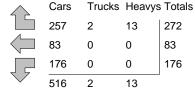
East Leg Total: 1090

272

83

176

Heavys Trucks Cars Totals 2 415 417


Tracey Park Drive

Heavys	Trucks	Cars	Totals
0	0	236 121	236
0	0	121	121
0	0	105	105
0	0	462	

Sidney Street

Tracey Street

Sidney Street

	554
3480	

Trucks Heavys Totals 559

 \mathbb{X} Peds Cross: West Peds: 13 West Entering: West Leg Total: 879

Cars 3044 Trucks 68 Heavys 23 Totals 3135

Cars 89 3200 191 Trucks 0 53 53 0 Heavys 0 10 10 Totals 89 3263

 \bowtie Peds Cross: South Peds: 25 South Entering: 3543 South Leg Total: 6678

Sidney Street & Tracey Street /Tracey Park Drive Traffic Count Summary

Intersection:	Sidney S	Street &	Tracey S	Street / T	ra Count D	Date: 10-Jul-20	14	Munio	cipality: Be	lleville			
	Nortl	1 Appro	ach Tot	als					South	1 Appro	ach Tot	als	
			rucks, & H			North/South					rucks, & H		
Hour Ending	Left	Thru	Right	Grand Total	Total Peds	Total Approaches	Hou Endi	ır ng	Left	Thru	Right	Grand Total	Total Peds
8:00:00	10	161	16	187	1	405	8:00	0:00	5	206	7	218	2
9:00:00		357	17	401	6	906	9:00	00:0	10	458	37	505	7
10:00:00	27	372	34	433	13	981	10:00	00:0	8	509	31	548	4
16:00:00	53	517	36	606	33		16:00		16	560	27	603	0
17:00:00	60	603	54	717	15		17:00		15	733	45	793	4
18:00:00	50	615	58	723	12	1332	18:00	0:00	21	556	32	609	4
Totals:	227	2625	215 ach Tota	3067	80	6343			75 Wost	3022	179 ach Tota	3276	21
	Include	es Cars, T	rucks, & H	eavys		East/West					rucks, & H		
Hour Ending	Left	Thru	Right	Grand Total	Total Peds	Total Approaches	Hou Endi	ır ng	Left	Thru	Right	Grand Total	Total Peds
8:00:00	9	2	22	33	2	72	8:00	0:00	23	9	7	39	0
9:00:00		6	32	54	1	128	9:00		45	14	15	74	2 1
10:00:00	26	7	42	75	11		10:00		35	19	18	72	
16:00:00	31	19	54	104	4		16:00		38	21	23	82	0
17:00:00	46	14	55	115	9		17:00		39	15	19	73	0 3 4
18:00:00	34	28	50	112	6	199	18:00	0:00	39	32	16	87	4
Totals:	162	76	255 Calc	493 ulated V	33 /alues f	920 or Traffic Cr	ossin	g Ma	219 ajor Stre	110 eet	98	427	10
Totals:		76 8:00						g M a	ajor Stre		98 18:00	427	10

Bell Boulevard & Sidney Street Mid-day Peak Diagram **Specified Period One Hour Peak** From: 10:00:00 **From:** 12:00:00 To: 15:00:00 To: 13:00:00 Weather conditions: Municipality: Belleville Cloudy Site #: 0000005402 Intersection: Person(s) who counted: Bell Boulevard & Sidney Street TFR File #: Count date: 15-Nov-2014 ** Signalized Intersection ** Major Road: Bell Boulevard runs W/E North Leg Total: 919 Heavys 0 1 Heavys 0 East Leg Total: 1844 North Entering: 393 Trucks 0 0 Trucks 1 East Entering: 872 North Peds: 3 Cars 85 233 73 391 Cars 525 East Peds: 4 \mathbb{X} 74 Peds Cross: Totals 85 234 Totals 526 Peds Cross: ⋈ Sidney Street Heavys Trucks Cars Totals Trucks Heavys Totals Cars 525 526 151 0 0 151 356 357 0 1 360 2 364 Bell Boulevard 867 Heavys Trucks Cars **Totals** Bell Boulevard 0 0 109 109 0 363 366 0 85 Trucks Heavys Totals 0 85 Cars 557 965 972 Sidney Street \mathbb{X} Peds Cross: \bowtie Peds Cross: Cars 678 Cars 84 265 529 878 West Peds: 0 Trucks 3 Trucks 0 1 2 South Peds: 2 Heavys 2 2 2 West Entering: 560 Heavys 0 South Entering: 882 West Leg Total: 1086 Totals 84 South Leg Total: 1565 Totals 683 532

Total Count Diagram

Municipality: Belleville

Site #: 0000005402

Intersection: Bell Boulevard & Sidney Street

TFR File #:

North Leg Total: 3378

North Entering: 1446

North Peds:

Peds Cross:

Count date: 15-Nov-2014 Weather conditions:

Cloudy

Person(s) who counted:

** Signalized Intersection **

17

⋈

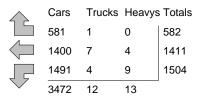
Heavys 0 2 Trucks 0 Cars 269 828 340 1437

Totals 269 834 343

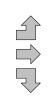
Major Road: Bell Boulevard runs W/E

Trucks 11 Cars 1921 Totals 1932

Heavys 0


East Leg Total: 7272 East Entering: 3497 East Peds: 5 \mathbb{X} Peds Cross:

Heavys Trucks Cars Totals 2011 2024



Bell Boulevard

Heavys	Trucks	Cars	Totals
0	1	390	391
2	7	1423	1432
0	1	294	295
2	9	2107	'

Bell Boulevard

Sidney Street

3277
16
10

Trucks Heavys Totals Cars 3748 3775

 \mathbb{X} Peds Cross: 0 West Peds: West Entering: 2118 West Leg Total: 4142

Cars 2613 Trucks 10 Heavys 10 Totals 2633

Cars 342 950 1985 Trucks 2 9 5 Heavys 0 10 Totals 344 2000

Peds Cross: \bowtie South Peds: 2 South Entering: 3303 South Leg Total: 5936

Bell Boulevard & Sidney Street Traffic Count Summary d & Sidney Street | Count Date: 15-Nov-2014 | Municipality: Belleville

Hour	North Include		ach Tot						South	Annro	ach Tot	ale	
Hour	include				South Approach Totals North/South Includes Cars, Trucks, & Heavy								
E a d'anna			ucks, & H	Grand	Total	North/South Total	Hou	r			rucks, & H	Grand	Total
Ending	Left	Thru	Right	Total	Peds	Approaches	Endir	ng	Left	Thru	Right	Total	Peds
11:00:00 12:00:00	0 90	0 207	0 79	0 376	0 13	1 1195	11:00 12:00		0 99	1 237	0 483	1 819	0 0
13:00:00	74	234	85	393	3		13:00		84	266	532	882	2
14:00:00	91	199	52	342	0		14:00		81	220	512	813	0
15:00:00	88	194	53	335	1	1123	15:00	:00	80	235	473	788	0
Totals:	343 East	834 Appro	269 ach Tota	1446	17	4749			344 Wes t	959 Appro	2000 ach Tota	3303	2
	Include	s Cars, Ti	rucks, & H	eavys		East/West					rucks, & H		
Hour Ending	Left	Thru	Right	Grand Total	Total Peds	Total Approaches	Hou Endir		Left	Thru	Right	Grand Total	Total Peds
11:00:00	0	0	0	0	0		11:00		0	0	_0	0	0
12:00:00	344	319	125	788	0		12:00		102	356	70	528	0
13:00:00 14:00:00	364 374	357 374	151 144	872 892	4 1		13:00 14:00		109 86	366 385	85 72	560 543	0
15:00:00	422	361	162	945	0		15:00		94	325	68	487	0
			.02	0.10	Û	02	.0.00			323			Ū
Totals:	1504	1411	582 Calc	3497	5	5615	ossin,	a Ma	391	1432	295	2118	0
Calculated Values for Traffic Crossing Major Street Hours Ending: 11:00 12:00 13:00 13:00 14:00 15:00 15:00													
Houre End	ina:	11.00	12.00	13.00	1.3.414		1/1	:nn	1⊿∙∩∩	15.00	15:00		
Hours End Crossing V		11:00 1	12:00 426	13:00 428	13:00 428			:00 393	14:00 393	15:00 403	15:00 403		

Bell Boulevard & Sidney Street Specified Period One

Afternoon Peak Diagram

Specified Period
From: 16:00:00
To: 18:00:00
To: 17:15:00

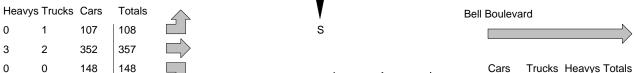
Municipality: Belleville Weather conditions: Site #: 0000005402 Cloudy

Intersection: Bell Boulevard & Sidney Street Person(s) who counted:

TFR File #: 1

3

Count date: 13-Nov-2014


607

** Signalized Intersection ** Major Road: Bell Boulevard runs W/E

North Leg Total: 890 Heavys 2 0 3 Heavys 4 East Leg Total: 1548 8 7 0 North Entering: 364 Trucks 1 Trucks 6 East Entering: 780 North Peds: 0 Cars 59 241 53 353 Cars 516 East Peds: 0 \mathbb{X} Peds Cross: ⋈ Totals 62 249 53 Totals 526 Peds Cross:

				•					
Peds Cross:	X	Cars	701		Cars	86	276	356	718
West Peds:	0	Trucks	8		Trucks	0	4	0	4
West Entering:	613	Heavys	4		Heavys	1	3	2	6
West Leg Total:	1091	Totals	713		Totals	87	283	358	,

Peds Cross:
South Peds: 0
South Entering: 728
South Leg Total: 1441

5

Trucks Heavys Totals

135

329

316

768

Cars

761

Total Count Diagram

Municipality: Belleville

Site #: 0000005402

Intersection: Bell Boulevard & Sidney Street

TFR File #: 1

North Leg Total: 1639

North Entering: 698

North Peds:

Peds Cross:

Count date: 13-Nov-2014

Weather conditions:

Cloudy

Person(s) who counted:

** Signalized Intersection **

Heavys 2 1 0 3
Trucks 2 10 1 13

Cars 99 474 109
Totals 103 485 110

Major Road: Bell Boulevard runs W/E

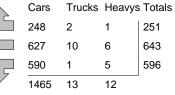
Trucks 10
Cars 925
Totals 941

Heavys 6

East Leg Total: 2827
East Entering: 1490
East Peds: 0
Peds Cross:

X

Heavys Trucks Cars Totals 9 13 876 898

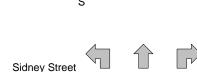

⋈

682

Bell Boulevard

 Heavys Trucks
 Cars
 Totals

 0
 2
 186
 188


 5
 6
 582
 593

 0
 0
 245
 245

1013

Bell Boulevard

Cars	Trucks	Heavys	Totals
1315	12	10	1337

Peds Cross:

West Peds: 0

West Entering: 1026

West Leg Total: 1924

 Cars
 1309

 Trucks
 11

 Heavys
 6

 Totals
 1326

 Cars
 150
 491
 624
 1265

 Trucks
 1
 6
 5
 12

 Heavys
 1
 5
 5
 11

 Totals
 152
 502
 634

Peds Cross:
South Peds: 0
South Entering: 1288
South Leg Total: 2614

Bell Boulevard & Sidney Street Traffic Count Summary

	NI a m4 la			Street		ount Date: 13-Nov-2014 Municipality: Belleville							
	Nortr	<u>Appro</u>	ach Tot	als					Soutl	n Appro	ach Tot	als	
Hour	Include	es Cars, T	rucks, & H	eavys Grand	Total	North/South Total	Hou		Include	es Cars, T	rucks, & H	eavys Grand	Total
Ending	Left	Thru	Right	Total	Total Peds	Approaches	Ending		Left	Thru	Right	Total	Total Peds
16:00:00	0	0	0	0	0		16:00		0	0	0	0	0
17:00:00	58	263	54	375	0		17:00		89	282	345	716	0
18:00:00	52	222	49	323	0	895	18:00):00	63	220	289	572	0
Totals:	110 East	485 Approa	103 ach Tota	698	0	1986			152 West	502 t Appro	634	1288 als	0
Hour	meiude	es Cars, r	iucks, & n	Grand	Total	Total East/West Total	Ηοι	ır	Includes Cars, Trucks, & Heavys Grand				Total
Ending	Left	Thru	Right	Total	Peds	Approaches	Endi	ng	Left	Thru	Right	Total	Peds
16:00:00	0	0	0	770	0		16:00		0	0	0	0	0
17:00:00 18:00:00	327 269	314 329	137 114	778 712	0 0	1133	17:00 18:00		115 73	349 244	141 104	605 421	0 0
Totals:	596	643	251	1490	0	2516			188	593	245	1026	0
		0.00				or Traffic Cr		_	-		40.00		
Hours Endi Crossing V		0:00	0:00	0:00	0:00		C	00:0	16:00 0	17:00 429	18:00 337		
L	a.a.o.			<u> </u>						720			

Mid-day Peak Diagram	Specified Period One Hour Peak From: 10:00:00 From: 12:45:00 To: 15:00:00 To: 13:45:00											
Municipality: Bellevile Site #: 0000005401 Intersection: Sidney Street & Tracey Street - Trac TFR File #: 1 Count date: 15-Nov-2014	Weather conditions: Cloudy Person(s) who counted:											
** Signalized Intersection ** Major Road: Sidney Street runs N/S												
North Leg Total: 1589 Heavys 0 2 0 2 0 2 Trucks 4 East Leg Total: 233 North Entering: 733 Trucks 0 2 0 2 Trucks 4 East Entering: 140 North Peds: 24 Peds Cross: № Cars 41 635 53 729 Totals 850 Totals 856 Peds Cross: № Heavys Trucks Cars Totals 0 0 73 73 Sidney Street North Entering: 733 Trucks 4 East Entering: 140 East Peds: 6 Peds Cross: № Sidney Street Cars Trucks Heavys Totals 19 0 0 19 19 0 0 19 43 0 0 43 Tracey Park Drive												
Heavys Trucks Cars Totals 0 0 39 39 0 0 16 16 0 0 5 0 0 60 Sidney Street	Cars Trucks Heavys Totals 93 0 0 93											
West Peds: 4 Trucks 2 Truc West Entering: 60 Heavys 2 Heav West Leg Total: 133 Totals 687 Total	rrs 13 735 24 772 Peds Cross: ks 0 4 0 4 South Peds: 0 ys 0 0 0 0 als 13 739 24 South Leg Total: 1463 ments											

Total Count Diagram

Municipality: Bellevile

Site #: 0000005401

Intersection: Sidney Street & Tracey Street - Trace

TFR File #: 1

Count date: 15-Nov-2014

Weather conditions:

Cloudy

Person(s) who counted:

** Signalized Intersection **

Major Road: Sidney Street runs N/S

North Leg Total: 6150

North Entering: 2773

North Peds: 60

Peds Cross: ⋈

 Heavys
 0
 10
 0
 10

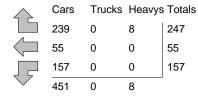
 Trucks
 0
 8
 0
 8

 Cars
 170
 2399
 186
 2755

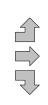
 Totals
 170
 2417
 186

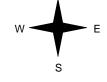
Heavys 11
Trucks 14
Cars 3352
Totals 3377

0 0 285 285


Totals

Tracey Park Drive


Heavys Trucks Cars



Sidney Street

Heavys Trucks Cars Totals
0 0 171 171
0 0 67 67
0 0 65 65
0 0 303

Sidney Street

Cars

363

Peds Cross:

West Peds: 6

West Entering: 303

West Leg Total: 588

 Cars
 2621

 Trucks
 8

 Heavys
 10

 Totals
 2639

Cars 60 2942 110 3112
Trucks 0 14 1 15
Heavys 0 3 0 3
Totals 60 2959 111

Peds Cross:
South Peds: 8
South Entering: 3130
South Leg Total: 5769

Trucks Heavys Totals

364

0

Sidney Street & Tracey Street - Tracey Park Driv Traffic Count Summary Sidney Street & Tracey Street - Tra Count Date: 15-Nov-2014 | Municipality: Relleville

Intersection: (Sidney S	Street &	Tracey S	Street - T	ra Count D	^{Date:} 15-Nov-20	014	Munio	cipality: Be	llevile			
	North	1 Appro	ach Tot	als					Soutl	h Appro	ach Tot	als	
Hour	Include	es Cars, I	rucks, & H	eavys Grand	Total	North/South Total	Hou	ır	Include	es Cars, I	rucks, & H	eavys Grand	Total
Ending	Left	Thru	Right	Total	Peds	Approaches	Endir	ng	Left	Thru	Right	Total	Peds
11:00:00 12:00:00 13:00:00 14:00:00 15:00:00	0 46 52 46 42	0 557 601 625 634	0 37 39 47 47	0 640 692 718 723	0 21 10 19 10	1418 1490 1493	11:00 12:00 13:00 14:00 15:00	:00 :00 :00	0 15 13 13 19	0 720 762 741 736	0 43 23 21 24	0 778 798 775 779	0 5 0 0 3
Totals:	186	2417	170	2773	60	5903			60	2959	111	3130	8
Totals.			ach Tota		- 00	3903					ach Tota		- 0
	Include	es Cars, T	rucks, & H	eavys		East/West	East/West Includes Cars, Trucks, & Heavys						
Hour Ending	Left	Thru	Right	Grand Total	Total Peds	Total Approaches	Hou Endir		Left	Thru	Right	Grand Total	Total Peds
11:00:00 12:00:00 13:00:00 14:00:00 15:00:00	0 42 39 42 34	0 11 16 19 9	0 53 67 67 60	0 106 122 128 103	0 0 3 4 1	198 194 192	11:00 12:00 13:00 14:00 15:00	:00 :00 :00	0 54 40 40 37	0 22 15 13 17	0 16 17 11 21	0 92 72 64 75	0 1 2 2 1
Totals: Hours En		55 11:00 0		459 ulated V 13:00 105	8/alues f 14:00 120	76 <u>2</u> or Traffic Cr	14	g M a :00 120	-	67 eet 15:00 101	65 15:00 101	303	6

Afternoon Peak Diagram Specified Period One Hour Peak From: 16:00:00 **From:** 16:15:00 To: 18:00:00 To: 17:15:00 Weather conditions: Municipality: Belleville Cloudy Site #: 000005401 Intersection: Person(s) who counted: Sidney Street & Tracey Street - Trac TFR File #: Count date: 13-Nov-2014 ** Signalized Intersection ** Major Road: Sidney Street runs N/S North Leg Total: 1593 Heavys 0 0 5 Heavys 6 East Leg Total: 292 6 North Entering: 811 Trucks 0 0 Trucks 5 East Entering: 127 North Peds: 15 Cars 64 653 83 800 Cars 771 East Peds: 5 \mathbb{X} Totals 782 Peds Cross: Totals 64 664 83 Peds Cross: ⋈ Sidney Street Trucks Heavys Totals Heavys Trucks Cars Totals Cars 113 113 0 2 52 23 0 0 23 52 0 52 Tracey Park Drive 125 2 Heavys Trucks Cars **Totals Tracey Street** 0 0 44 44 0 25 25 22 22 Trucks Heavys Totals 0 0 Cars 164 0 165 Sidney Street \mathbb{X} Peds Cross: \bowtie Peds Cross: Cars 727 Cars 26 56 759 West Peds: 8 Trucks 6 Trucks 0 1 6 South Peds: 2 Heavys 5 4 West Entering: 91 Heavys 0 0 South Entering: 769 West Leg Total: 204 Totals 26 South Leg Total: 1507 Totals 738 Comments

Total Count Diagram

Municipality: Belleville

Site #: 000005401

Intersection: Sidney Street & Tracey Street - Trac

TFR File #:

Count date: 13-Nov-2014 Weather conditions:

Cloudy

Person(s) who counted:

** Signalized Intersection **

Major Road: Sidney Street runs N/S

North Leg Total: 2859 North Entering: 1475

North Peds: 28 Peds Cross:

Heavys 0 0 1 10 Trucks 0 Cars 113 1222 123 Totals 113 1238

1458 124

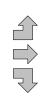
Heavys 11 Trucks 12 Cars 1361

Totals 1384

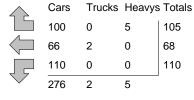
East Leg Total: 555 East Entering: 283 East Peds: \mathbb{X} Peds Cross:

105

68


110

Heavys Trucks Cars Totals 226 230


Tracey Park Drive

Heavys	Trucks	Cars	Total
0	1	80	81
0	0	46	46
0	0	41	41
0	1	167	

Sidney Street

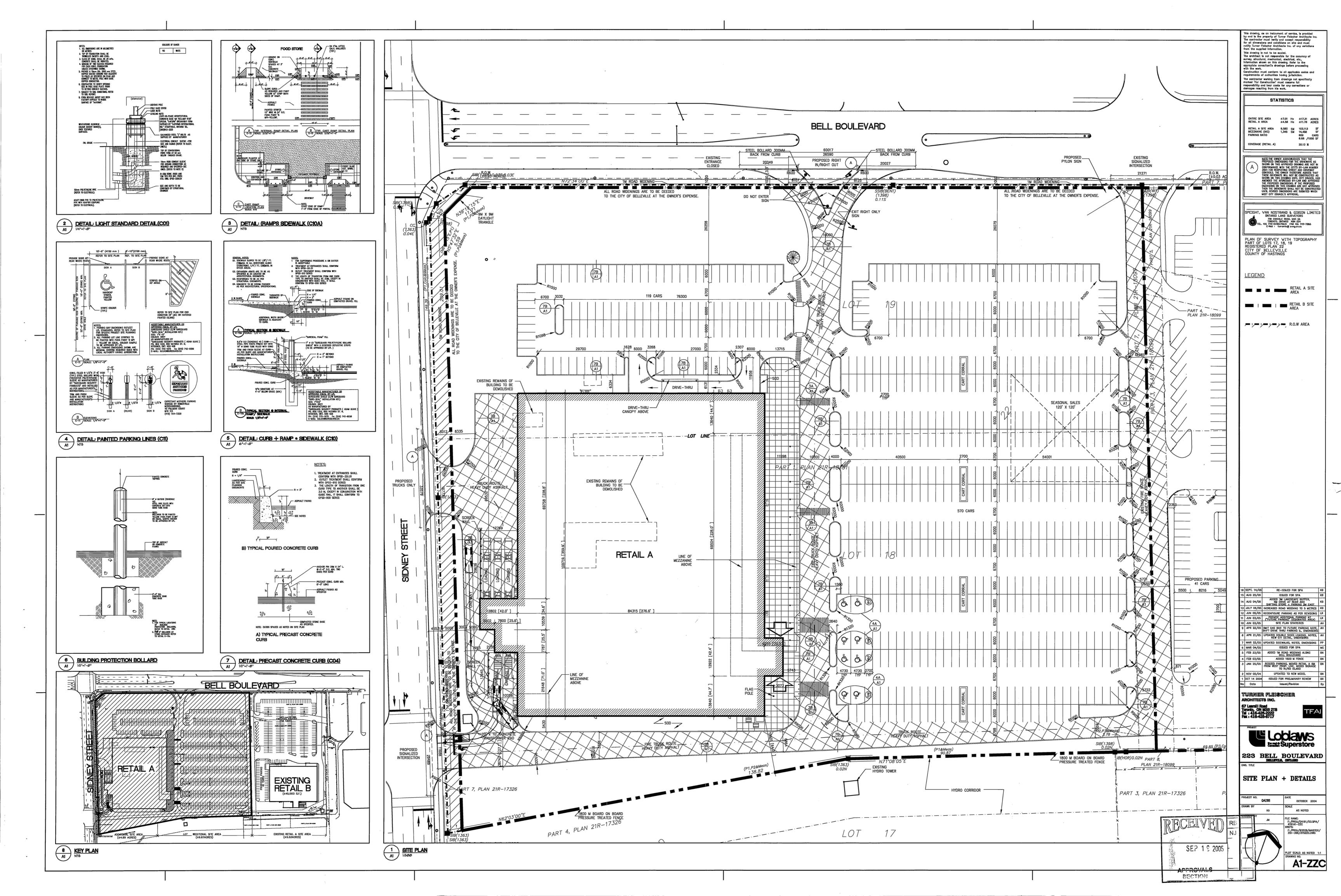
Tracey Street

Trucks Heavys Totals Cars 269 0 272

 \mathbb{X} Peds Cross: West Peds: 12 West Entering: West Leg Total: 398

Cars 1373 Trucks 9 Heavys 7 Totals 1389

Cars 47 1181 100 Trucks 2 11 2 Heavys 0 6 Totals 49 1198


Peds Cross: \bowtie South Peds: 3 South Entering: 1349 South Leg Total: 2738

Sidney Street & Tracey Street - Tracey Park Driv Traffic Count Summary

	North				٦	^{late:} 13-Nov-20	, ı ¬		cipality: Be	licvilic			
	NOLLI	Appro	ach Tot	als							ach Tot		
	Include	s Cars, T	rucks, & H			North/South		-	Include	es Cars, T	rucks, & H		+
Hour Ending L	Left	Thru	Right	Grand Total	Total Peds	Total Approaches	Hou Endir	ir ng	Left	Thru	Right	Grand Total	Total Peds
16:00:00	0	0	0	0	0		16:00:00		0	0	0	0	0
17:00:00	80	655	57	792	15		17:00:00		26	646	65	737	2 1
18:00:00	44	583	56	683	13	1295	18:00	0:00	23	552	37	612	1
Totals:	124 East	1238 Appro a	113 ach Tota	1475 I IS	28	2824			49 Wes t	1198 t Appro	102 ach Tota	1349 als	3
	Include	s Cars, T	rucks, & H			East/West Total			Include	es Cars, T	rucks, & H		
Hour Ending L	Left	Thru	Right	Grand Total	Total Peds	Total Approaches	Hou Endir	ır ng	Left	Thru	Right	Grand Total	Total Peds
16:00:00	0	0	0	0	0		16:00		0	0	0	0	0
17:00:00	51	27	53	131	4		17:00		42	25	21	88	6
18:00:00	59	41	52	152	3	232	18:00		39	21	20	80	6
Totals:	110	68	105	283	7	451			81	46	41	168	12
						or Traffic Cr		_	-				
Hours Endin		16:00	16:00	17:00	17:00			:00	18:00	18:00	18:00		
Crossing Va	aiues:	0	0	137	137			137	153	153	153		

Appendix B: Synchro Outputs

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBR SBR Lanc Configurations N		٠	→	•	•	•	•	4	†	~	>	Ţ	4
Volume (vpfn)	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Ideal Flow (vphpt) 1900													
Lane Width (s) 4.0 6.0 4.0 6.0 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6													
Total Lost time (s)													
Lane Util. Factor				3.3				3.3					3.3
Frpb, ped/bikes	. ,												
Figh, ped/bikes													
Frit 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.85 1.00 0.85 1.00 0.97 Filt Protected 0.95 1.00 0.95 1.00 1.00 0.98 1.00 0.98 1.00 0.97 Filt Protected 0.95 1.00 0.95 1.00 0.98 1.00 0.95 1.00 0													
Fit Protected 0.95													
Satd. Flow (prot) 1618 3125 3169 1685 1416 1759 1441 1637 1722 Fli Permitted 0.59 1.00 0.54 1.00 1.00 0.63 1.00 0.58 1.00 Satd. Flow (perm) 997 3125 1799 1685 1416 1125 1441 1003 1722 Peak-hour factor, PHF 0.92 1.02 0.92 0.93 0.92 0.93 0													
Fill Permitted													
Satd. Flow (perm) 977 3125 1799 1685 1416 1125 1441 1003 1722 Peak-hour factor, PHF 0.92 0.02													
Peak-hour factor, PHF 0.92													
Adj. Flow (vph) 61 216 97 190 190 26 89 202 338 60 217 52 RTOR Reduction (vph) 0 51 0 0 0 18 0 0 193 0 9 0 Lane Group Flow (vph) 61 262 0 190 190 8 0 291 145 60 260 0 Confl. Peds. (#/hr) 1 2 2 1 10 10 10 Heavy Vehicles (%) 4% 6% 6% 3% 9% 4% 7% 1% 2% 2% 3% 6% Turn Type pm+pt NA pm+pt NA pm+pt NA Perm perm NA Perm NA Per				0.92				0.92					0.92
RTÓR Reduction (vph)													
Lane Group Flow (rph)													
Confil Peds. (#/hr)												260	
Turn Type pm+pt NA pm+pt NA perm pm+pt NA 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		1		2	2		1			10	10		
Protected Phases	Heavy Vehicles (%)	4%	6%	6%	3%	9%	4%	7%	1%	2%	2%	3%	6%
Permitted Phases	Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	
Actuated Green, G (s)	Protected Phases	7	4		3	8		1	6			2	
Effective Green, g (s) 41.0 29.0 41.0 29.0 29.0 43.0 43.0 27.0 27.0 Actuated g/C Ratio 0.41 0.29 0.41 0.29 0.29 0.43 0.43 0.43 0.27 0.27 Clearance Time (s) 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	Permitted Phases							6					
Actuated g/C Ratio 0.41 0.29 0.41 0.29 0.29 0.43 0.43 0.27 0.27 Clearance Time (s) 4.0 6.0 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Lane Grp Cap (vph) 483 906 901 488 410 559 619 270 464 v/s Ratio Prot 0.02 0.08 c0.03 c0.11 c0.06 0.15 v/s Ratio Perm 0.04 0.06 0.01 c0.16 0.10 0.06 v/c Ratio 0.13 0.29 0.21 0.39 0.02 0.52 0.23 0.22 0.56 Uniform Delay, d1 18.1 27.5 18.5 28.4 25.3 20.9 18.1 28.3 31.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	, ,												
Clearance Time (s) 4.0 6.0 4.0 6.0 6.0 6.0 6.0 6.0 6.0 Lane Grp Cap (vph) 483 906 901 488 410 559 619 270 464 v/s Ratio Prot 0.02 0.08 c0.03 c0.11 c0.06 0.15 v/s Ratio Perm 0.04 0.06 0.01 c0.16 0.10 0.06 v/c Ratio 0.13 0.29 0.21 0.39 0.02 0.52 0.23 0.22 0.56 Uniform Delay, d1 18.1 27.5 18.5 28.4 25.3 20.9 18.1 28.3 31.4 Progression Factor 1.00													
Lane Grp Cap (vph) 483 906 901 488 410 559 619 270 464 v/s Ratio Prot 0.02 0.08 c0.03 c0.11 c0.06 0.15 v/s Ratio Perm 0.04 0.06 0.01 c0.16 0.10 0.06 v/c Ratio 0.13 0.29 0.21 0.39 0.02 0.52 0.23 0.22 0.56 Uniform Delay, d1 18.1 27.5 18.5 28.4 25.3 20.9 18.1 28.3 31.4 Progression Factor 1.00 <													
W/s Ratio Prot 0.02 0.08 c0.03 c0.11 c0.06 0.15 V/s Ratio Perm 0.04 0.06 0.01 c0.16 0.10 0.06 V/c Ratio 0.13 0.29 0.21 0.39 0.02 0.52 0.23 0.22 0.56 Uniform Delay, d1 18.1 27.5 18.5 28.4 25.3 20.9 18.1 28.3 31.4 Progression Factor 1.00 2.0 2.0 2.0 2.													
V/s Ratio Perm 0.04 0.06 0.01 c0.16 0.10 0.06 V/c Ratio 0.13 0.29 0.21 0.39 0.02 0.52 0.23 0.22 0.56 Uniform Delay, d1 18.1 27.5 18.5 28.4 25.3 20.9 18.1 28.3 31.4 Progression Factor 1.00							410			619	270		
V/c Ratio 0.13 0.29 0.21 0.39 0.02 0.52 0.23 0.22 0.56 Uniform Delay, d1 18.1 27.5 18.5 28.4 25.3 20.9 18.1 28.3 31.4 Progression Factor 1.00			0.08			c0.11						0.15	
Uniform Delay, d1 18.1 27.5 18.5 28.4 25.3 20.9 18.1 28.3 31.4 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Progression Factor 1.00 <td></td>													
Incremental Delay, d2													
Delay (s) 18.7 28.3 19.1 30.7 25.4 24.4 19.0 30.2 36.2 Level of Service B C B C C C D Approach Delay (s) 26.7 24.9 21.5 35.1 Approach LOS C C C C D Intersection Summary HCM 2000 Control Delay 26.0 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.45 Actuated Cycle Length (s) 100.0 Sum of lost time (s) 20.0 Intersection Capacity Utilization 84.2% ICU Level of Service E Analysis Period (min) 15	•												
Level of Service B C B C C C B C D Approach Delay (s) 26.7 24.9 21.5 35.1 Approach LOS C C C D Intersection Summary HCM 2000 Control Delay 26.0 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.45 Actuated Cycle Length (s) 100.0 Sum of lost time (s) 20.0 Intersection Capacity Utilization 84.2% ICU Level of Service E Analysis Period (min) 15	,												
Approach Delay (s) 26.7 24.9 21.5 35.1 Approach LOS C C C D Intersection Summary HCM 2000 Control Delay 26.0 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.45 Actuated Cycle Length (s) 100.0 Sum of lost time (s) 20.0 Intersection Capacity Utilization 84.2% ICU Level of Service E Analysis Period (min) 15													
Approach LOS C C C D Intersection Summary HCM 2000 Control Delay 26.0 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.45 Actuated Cycle Length (s) 100.0 Sum of lost time (s) 20.0 Intersection Capacity Utilization 84.2% ICU Level of Service E Analysis Period (min) 15		Б			D		C			Б	C		
Intersection Summary HCM 2000 Control Delay 26.0 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.45 Actuated Cycle Length (s) 100.0 Sum of lost time (s) 20.0 Intersection Capacity Utilization 84.2% ICU Level of Service E Analysis Period (min) 15	• • • • • • • • • • • • • • • • • • • •												
HCM 2000 Control Delay 26.0 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.45 Actuated Cycle Length (s) 100.0 Sum of lost time (s) 100.0 Sum of lost time (s) 100.0 Intersection Capacity Utilization 84.2% 100 Level of Service E Analysis Period (min) 15													
HCM 2000 Volume to Capacity ratio0.45Actuated Cycle Length (s)100.0Sum of lost time (s)20.0Intersection Capacity Utilization84.2%ICU Level of ServiceEAnalysis Period (min)15				26.0	Ц	CM 2000	Level of	Sarvica		C			
Actuated Cycle Length (s) 100.0 Sum of lost time (s) 20.0 Intersection Capacity Utilization 84.2% ICU Level of Service E Analysis Period (min) 15	J	city ratio			11	CIVI 2000	Level of	Jei vice		C			
Intersection Capacity Utilization 84.2% ICU Level of Service E Analysis Period (min) 15		iony rano			S	um of los	t time (s)			20.0			
Analysis Period (min) 15		ation						<u>.</u>					
					10	J LOVOI (O 51 V 100						
Contical Earle Orbup	c Critical Lane Group												

2014 Existing Traffic CIMA Canada Inc.

	۶	→	•	•	←	•	4	†	/	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			414			€ि	
Volume (vph)	32	13	18	23	8	46	12	511	27	60	387	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			8.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		0.99			0.99			1.00			1.00	
Flpb, ped/bikes		0.99			1.00			1.00			1.00	
Frt		0.96			0.92			0.99			0.99	
Flt Protected		0.98			0.99			1.00			0.99	
Satd. Flow (prot)		1695			1576			3392			3327	
Flt Permitted		0.82			0.90			0.67			0.78	
Satd. Flow (perm)		1433			1442			2268			2604	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	35	14	20	25	9	50	13	555	29	65	421	29
RTOR Reduction (vph)	0	12	0	0	40	0	0	3	0	0	4	0
Lane Group Flow (vph)	0	57	0	0	44	0	0	594	0	0	511	0
Confl. Peds. (#/hr)	15		4	4		5			5	5		
Heavy Vehicles (%)	0%	0%	0%	0%	0%	7%	0%	2%	0%	0%	4%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			1			2	
Permitted Phases	8			4			1			2		
Actuated Green, G (s)		24.0			24.0			42.0			34.0	
Effective Green, g (s)		24.0			24.0			42.0			34.0	
Actuated g/C Ratio		0.20			0.20			0.35			0.28	
Clearance Time (s)		6.0			6.0			8.0			6.0	
Lane Grp Cap (vph)		286			288			793			737	
v/s Ratio Prot												
v/s Ratio Perm		c0.04			0.03			c0.26			c0.20	
v/c Ratio		0.20			0.15			0.75			0.69	
Uniform Delay, d1		40.0			39.6			34.4			38.4	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		1.6			1.1			6.4			5.3	
Delay (s)		41.6			40.7			40.8			43.7	
Level of Service		D			D			D			D	
Approach Delay (s)		41.6			40.7			40.8			43.7	
Approach LOS		D			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			42.0	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capaci	ty ratio		0.60									
Actuated Cycle Length (s)			120.0		um of lost				20.0			
Intersection Capacity Utilizati	on		66.6%	IC	CU Level of	of Service	!		С			
Analysis Period (min)			15									
c Critical Lano Group												

c Critical Lane Group

2014 Existing Traffic CIMA Canada Inc.

Summary of All Intervals

Start Time	6:57
End Time	8:27
Total Time (min)	90
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	2715
Vehs Exited	2699
Starting Vehs	95
Ending Vehs	111
Travel Distance (km)	3571
Travel Time (hr)	113.1
Total Delay (hr)	37.5
Total Stops	3239
Fuel Used (I)	304.0

Interval #0 Information Seeding

Start Time	6:57
End Time	7:27
Total Time (min)	30
Volumes adjusted by Growth Fa	ictors.
No data recorded this interval	

Interval #1 Information Recording

CL LT'	7.07
Start Time	1:21
End Time	8:27
Total Time (min)	60
Volumes adjusted by Gro	wth Factors.

Vehs Entered	2715	
Vehs Exited	2699	
Starting Vehs	95	
Ending Vehs	111	
Travel Distance (km)	3571	
Travel Time (hr)	113.1	
Total Delay (hr)	37.5	
Total Stops	3239	
Fuel Used (I)	304.0	

Intersection: 3: Sidney St & Bell Blvd

Movement	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB	SB
Directions Served	L	T	TR	L	L	T	R	LT	R	L	T	TR
Maximum Queue (m)	29.5	35.1	60.6	36.0	56.1	113.2	77.3	122.8	98.1	47.0	54.7	43.2
Average Queue (m)	15.5	22.7	27.4	19.5	26.7	52.9	9.4	56.9	37.8	13.7	27.7	20.5
95th Queue (m)	26.7	35.6	48.0	31.5	42.8	91.6	40.1	110.9	74.3	29.8	47.9	40.4
Link Distance (m)		804.2	804.2		670.0	670.0		173.8	173.8		351.9	351.9
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (m)	40.0			70.0			70.0			40.0		
Storage Blk Time (%)		0				4	0				3	
Queuing Penalty (veh)		0				2	0				2	

Intersection: 6: Sidney St & Tracey Park Dr/Tracey St

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	39.9	46.8	96.8	107.8	73.3	78.1
Average Queue (m)	17.8	20.8	63.4	66.8	49.4	55.8
95th Queue (m)	34.0	39.9	92.5	95.0	69.1	77.0
Link Distance (m)	717.4	725.4	416.9	416.9	162.0	162.0
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 9: Sidney St & Loblaw

Movement	WB	WB	NB	SB	SB
Directions Served	L	R	TR	LT	T
Maximum Queue (m)	29.7	16.6	15.0	60.2	41.0
Average Queue (m)	10.7	9.0	1.2	19.0	3.7
95th Queue (m)	22.4	13.8	6.5	41.8	19.1
Link Distance (m)	151.1	151.1	162.0	173.8	173.8
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Network Summary

Network wide Queuing Penalty: 4

	٠	→	•	•	—	•	4	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ ⊅		77	↑	7		4	7	Ť	∱ ∱	
Volume (vph)	164	346	160	691	533	142	142	410	670	63	322	113
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.3	3.3	3.0	3.3	3.0	3.3	3.3	3.0	3.0	3.3	3.3
Total Lost time (s)	4.0	6.0		4.0	6.0	6.0		6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95		0.97	1.00	1.00		1.00	1.00	1.00	0.95	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.99		1.00	0.97	1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		1.00	1.00	0.99	1.00	
Frt	1.00	0.95		1.00	1.00	0.85		1.00	0.85	1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00	1.00		0.99	1.00	0.95	1.00	
Satd. Flow (prot)	1620	3136		3173	1685	1429		1768	1431	1641	3217	
Flt Permitted	0.14	1.00		0.23	1.00	1.00		0.60	1.00	0.31	1.00	
Satd. Flow (perm)	244	3136		763	1685	1429		1079	1431	543	3217	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	178	376	174	751	579	154	154	446	728	68	350	123
RTOR Reduction (vph)	0	45	0	0	0	78	0	0	233	0	29	0
Lane Group Flow (vph)	178	505	0	751	579	76	0	600	496	68	444	0
Confl. Peds. (#/hr)	1	404		004	001	1	3	40/	13	13	001	3
Heavy Vehicles (%)	4%	6%	6%	3%	9%	4%	7%	1%	2%	2%	3%	6%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	
Protected Phases	7	4		3	8		1	6	,		2	
Permitted Phases	4	00.0		8	20.0	8	6	50.0	6	2	47.0	
Actuated Green, G (s)	36.0	28.0		50.0	38.0	38.0		58.0	58.0	46.0	46.0	
Effective Green, g (s)	36.0	28.0		50.0	38.0	38.0		58.0	58.0	46.0	46.0	
Actuated g/C Ratio	0.30	0.23		0.42	0.32	0.32		0.48	0.48	0.38	0.38	
Clearance Time (s)	4.0	6.0		4.0	6.0	6.0		6.0	6.0	6.0	6.0	
Lane Grp Cap (vph)	164	731		679	533	452		567	691	208	1233	
v/s Ratio Prot	0.07	0.16		c0.17	0.34			c0.07			0.14	
v/s Ratio Perm	0.25			c0.29		0.05		c0.44	0.35	0.13		
v/c Ratio	1.09	0.69		1.11	1.09	0.17		1.06	0.72	0.33	0.36	
Uniform Delay, d1	38.0	42.0		28.8	41.0	29.6		31.0	24.5	26.1	26.5	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	94.9	5.3		67.3	64.5	0.8		54.1	6.3	4.1	8.0	
Delay (s)	132.9	47.3		96.1	105.5	30.4		85.1	30.8	30.2	27.3	
Level of Service	F	D		F	F	С		F	С	С	С	
Approach LOS		68.3			92.9			55.3			27.7	
Approach LOS		E			F			E			С	
Intersection Summary												
HCM 2000 Control Delay			67.7	Н	CM 2000	Level of	Service		E			
HCM 2000 Volume to Capa	acity ratio		1.15						_			
Actuated Cycle Length (s)			120.0		um of los				20.0			
Intersection Capacity Utiliza	ation		104.1%	IC	CU Level	of Service	9		G			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	•	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4T>			4T>	
Volume (vph)	51	22	22	59	37	60	27	1041	49	70	930	58
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			8.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		0.99			0.99			1.00			1.00	
Flpb, ped/bikes		0.99			0.99			1.00			1.00	
Frt		0.97			0.95			0.99			0.99	
Flt Protected		0.97			0.98			1.00			1.00	
Satd. Flow (prot)		1702			1646			3421			3346	
Flt Permitted		0.65			0.82			0.57			0.70	
Satd. Flow (perm)		1145			1379			1953			2336	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	55	24	24	64	40	65	29	1132	53	76	1011	63
RTOR Reduction (vph)	0	8	0	0	16	0	0	2	0	0	3	0
Lane Group Flow (vph)	0	95	0	0	153	0	0	1212	0	0	1147	0
Confl. Peds. (#/hr)	14		12	12		14	5		13	13		5
Heavy Vehicles (%)	0%	0%	0%	0%	0%	4%	0%	1%	0%	3%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			1			2	
Permitted Phases	8			4			1			2		
Actuated Green, G (s)		24.0			24.0			56.0			45.0	
Effective Green, g (s)		24.0			24.0			56.0			45.0	
Actuated g/C Ratio		0.17			0.17			0.39			0.31	
Clearance Time (s)		6.0			6.0			8.0			6.0	
Lane Grp Cap (vph)		189			228			754			724	
v/s Ratio Prot												
v/s Ratio Perm		0.08			c0.11			c0.62			c0.49	
v/c Ratio		0.51			0.67			1.61			1.58	
Uniform Delay, d1		55.1			56.8			44.5			50.0	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		9.3			14.7			279.3			269.6	
Delay (s)		64.4			71.5			323.8			319.6	
Level of Service		E			E			F			F	
Approach Delay (s)		64.4			71.5			323.8			319.6	
Approach LOS		Е			E			F			F	
Intersection Summary												
HCM 2000 Control Delay			295.7	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	city ratio		1.42									
Actuated Cycle Length (s)			145.0		um of lost				20.0			
Intersection Capacity Utiliza	tion		97.5%	IC	CU Level of	of Service			F			
Analysis Period (min)			15									

c Critical Lane Group

Start Time	6:57
End Time	8:27
Total Time (min)	90
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	4283
Vehs Exited	4273
Starting Vehs	257
Ending Vehs	267
Travel Distance (km)	5577
Travel Time (hr)	362.6
Total Delay (hr)	244.7
Total Stops	7117
Fuel Used (I)	640.1

Interval #0 Information Seeding

Start Time	6:57
End Time	7:27
Total Time (min)	30
Volumes adjusted by Growth Fac	tors.
No data recorded this interval	

Start Time	7:27
End Time	8:27
Total Time (min)	60
Volumes adjusted by Grov	wth Factors.

Vehs Entered	4283	
Vehs Exited	4273	
Starting Vehs	257	
Ending Vehs	267	
Travel Distance (km)	5577	
Travel Time (hr)	362.6	
Total Delay (hr)	244.7	
Total Stops	7117	
Fuel Used (I)	640.1	

Movement	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB	SB
Directions Served	L	Т	TR	L	L	Т	R	LT	R	L	T	TR
Maximum Queue (m)	47.5	104.2	106.6	77.4	407.7	420.9	77.5	176.6	142.6	28.4	59.7	63.4
Average Queue (m)	45.0	71.4	72.6	71.6	167.6	224.0	47.7	115.2	64.2	11.8	33.2	29.8
95th Queue (m)	53.7	106.3	102.8	86.8	349.3	392.3	101.2	173.5	117.5	24.6	51.5	54.8
Link Distance (m)		804.2	804.2		670.0	670.0		166.4	166.4		351.9	351.9
Upstream Blk Time (%)								4				
Queuing Penalty (veh)								23				
Storage Bay Dist (m)	40.0			70.0			70.0			40.0		
Storage Blk Time (%)	50	17		10	22	51	0				4	
Queuing Penalty (veh)	87	28		36	77	72	0				3	

Intersection: 6: Sidney St & Tracey Park Dr/Tracey St

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	53.0	79.0	255.5	246.8	169.2	183.8
Average Queue (m)	19.7	36.6	155.4	159.7	113.0	121.0
95th Queue (m)	37.3	68.8	236.2	240.1	149.3	158.6
Link Distance (m)	717.4	725.4	416.9	416.9	169.5	169.5
Upstream Blk Time (%)					0	1
Queuing Penalty (veh)					0	5
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 9: Sidney St & Loblaw

Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	R	T	TR	LT	T
Maximum Queue (m)	254.1	246.8	54.0	64.0	91.0	98.7
Average Queue (m)	245.5	244.5	7.2	13.4	45.3	31.5
95th Queue (m)	250.5	249.7	31.8	41.6	71.9	72.3
Link Distance (m)	242.2	242.2	169.5	169.5	166.4	166.4
Upstream Blk Time (%)	99	93				
Queuing Penalty (veh)	0	0				
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

	۶	→	•	•	—	•	1	†	~	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ∱		ሻሻ	^	7	ሻ	†	7	Ť	^	7
Volume (vph)	82	247	100	353	333	43	118	256	431	70	230	75
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.3	3.3	3.0	3.3	3.0	3.3	3.3	3.0	3.0	3.3	3.3
Total Lost time (s)	4.0	6.0		4.0	6.0	6.0	4.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	0.95		0.97	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.99	1.00	1.00	0.98	1.00	1.00	1.00
Flpb, ped/bikes Frt	1.00 1.00	1.00 0.96		1.00 1.00	1.00 1.00	1.00 0.85	1.00 1.00	1.00 1.00	1.00 0.85	0.99 1.00	1.00 1.00	1.00 0.85
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1619	3137		3171	1685	1429	1631	1818	1443	1638	3388	1473
Flt Permitted	0.39	1.00		0.45	1.00	1.00	0.52	1.00	1.00	0.59	1.00	1.00
Satd. Flow (perm)	657	3137		1515	1685	1429	888	1818	1443	1015	3388	1473
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	89	268	109	384	362	47	128	278	468	76	250	82
RTOR Reduction (vph)	0	49	0	0	0	32	0	0	270	0	0	58
Lane Group Flow (vph)	89	328	0	384	362	15	128	278	198	76	250	24
Confl. Peds. (#/hr)	1		2	2		1			10	10		
Heavy Vehicles (%)	4%	6%	6%	3%	9%	4%	7%	1%	2%	2%	3%	6%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8		1	6			2	
Permitted Phases	4			8		8	6		6	2		2
Actuated Green, G (s)	34.0	26.0		38.0	28.0	28.0	38.0	38.0	38.0	26.0	26.0	26.0
Effective Green, g (s)	34.0	26.0		38.0	28.0	28.0	38.0	38.0	38.0	26.0	26.0	26.0
Actuated g/C Ratio	0.38	0.29		0.42	0.31	0.31	0.42	0.42	0.42	0.29	0.29	0.29
Clearance Time (s)	4.0	6.0		4.0	6.0	6.0	4.0	6.0	6.0	6.0	6.0	6.0
Lane Grp Cap (vph)	333	906		823	524	444	440	767	609	293	978	425
v/s Ratio Prot	0.02	0.10		c0.05	c0.21	0.01	0.03	c0.15	0.14	0.07	0.07	0.00
v/s Ratio Perm	0.08	0.24		0.15	0.40	0.01	0.10	0.24	0.14	0.07	0.26	0.02
v/c Ratio Uniform Delay, d1	0.27 18.8	0.36 25.4		0.47 17.2	0.69 27.2	0.03 21.6	0.29 16.4	0.36 17.7	0.32 17.4	0.26 24.6	0.26 24.6	0.06
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	2.0	1.00		1.00	7.3	0.1	1.00	1.00	1.00	2.1	0.6	0.2
Delay (s)	20.8	26.5		19.1	34.5	21.7	18.1	19.1	18.8	26.7	25.2	23.4
Level of Service	C	C		В	C	C	В	В	В	C	C	C
Approach Delay (s)		25.4			26.3			18.8			25.1	
Approach LOS		С			С			В			С	
Intersection Summary												
HCM 2000 Control Delay	., .,		23.4	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.54	_					22.2			
Actuated Cycle Length (s)	tion		90.0		um of lost				20.0			
Intersection Capacity Utiliza	lion		85.9%	IC	CU Level of	oi Service	2		E			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	4	†	/	/	ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्सी के			र्सी	
Volume (vph)	39	16	22	28	10	55	15	722	33	72	531	33
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			8.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		0.99			0.99			1.00			1.00	
Flpb, ped/bikes		0.99			1.00			1.00			1.00	
Frt		0.96			0.92			0.99			0.99	
Flt Protected		0.98			0.99			1.00			0.99	
Satd. Flow (prot)		1700			1579			3396			3331	
Flt Permitted		0.83			0.91			0.93			0.76	
Satd. Flow (perm)		1447			1451			3175			2534	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	42	17	24	30	11	60	16	785	36	78	577	36
RTOR Reduction (vph)	0	17	0	0	41	0	0	4	0	0	4	0
Lane Group Flow (vph)	0	66	0	0	60	0	0	833	0	0	687	0
Confl. Peds. (#/hr)	15		4	4		5			5	5		
Heavy Vehicles (%)	0%	0%	0%	0%	0%	7%	0%	2%	0%	0%	4%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	_	8		_	4		_	6		_	2	
Permitted Phases	8			4			6			2		
Actuated Green, G (s)		28.0			28.0			48.0			50.0	
Effective Green, g (s)		28.0			28.0			48.0			50.0	
Actuated g/C Ratio		0.31			0.31			0.53			0.56	
Clearance Time (s)		6.0			6.0			8.0			6.0	
Lane Grp Cap (vph)		450			451			1693			1407	
v/s Ratio Prot		0.05			0.04			0.07			0.07	
v/s Ratio Perm		c0.05			0.04			0.26			c0.27	
v/c Ratio		0.15			0.13			0.49			0.49	
Uniform Delay, d1		22.4			22.3			13.3			12.2	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.7			0.6			1.0			1.2	
Delay (s)		23.1			22.9			14.3			13.4	
Level of Service		C			C			B			B	
Approach Delay (s)		23.1			22.9			14.3			13.4	
Approach LOS		С			С			В			В	
Intersection Summary												
HCM 2000 Control Delay			14.9	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capaci	ty ratio		0.38									
Actuated Cycle Length (s)			90.0		um of lost				14.0			
Intersection Capacity Utilizati	on		76.0%	IC	CU Level of	of Service	: 		D			
Analysis Period (min)			15									

c Critical Lane Group

	•	•	†	/	>	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	*	7	∱ β			414		
Volume (vph)	66	67	711	109	109	543		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.0	4.0	4.0			4.0		
Lane Util. Factor	1.00	1.00	0.95			0.95		
Frt	1.00	0.85	0.98			1.00		
Flt Protected	0.95	1.00	1.00			0.99		
Satd. Flow (prot)	1711	1531	3353			3393		
Flt Permitted	0.95	1.00	1.00			0.66		
Satd. Flow (perm)	1711	1531	3353			2252		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	72	73	773	118	118	590		
RTOR Reduction (vph)	0	59	10	0	0	0		
Lane Group Flow (vph)	72	14	881	0	0	708		
Turn Type	Prot	Perm	NA		Perm	NA		
Protected Phases	8		2			6		
Permitted Phases		8			6	-		
Actuated Green, G (s)	23.0	23.0	89.0			89.0		
Effective Green, g (s)	23.0	23.0	89.0			89.0		
Actuated g/C Ratio	0.19	0.19	0.74			0.74		
Clearance Time (s)	4.0	4.0	4.0			4.0		
Lane Grp Cap (vph)	327	293	2486			1670		
v/s Ratio Prot	c0.04		0.26					
v/s Ratio Perm	30101	0.01	5.20			c0.31		
v/c Ratio	0.22	0.05	0.35			0.42		
Uniform Delay, d1	40.9	39.6	5.4			5.8		
Progression Factor	1.00	1.00	1.00			1.00		
Incremental Delay, d2	1.5	0.3	0.4			0.8		
Delay (s)	42.5	39.9	5.8			6.6		
Level of Service	D	D	A			A		
Approach Delay (s)	41.2		5.8			6.6		
Approach LOS	D		A			A		
Intersection Summary								
HCM 2000 Control Delay			9.1	Ш	CM 2000	Level of Service	A	
HCM 2000 Collino Delay HCM 2000 Volume to Capa	acity ratio		0.38	П	CIVI ZUUU	Level of Service	А	
Actuated Cycle Length (s)	acity ratio		120.0	Ç.	um of lost	tima (s)	8.0	
Intersection Capacity Utilization	ation		55.0%			of Service	Α	
Analysis Period (min)	aliUH		15	IC	O LEVEL	DI SEI VICE	A	
c Critical Lane Group			15					
c Chilical Latte Group								

Start Time	6:57
End Time	8:27
Total Time (min)	90
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	2692
Vehs Exited	2696
Starting Vehs	114
Ending Vehs	110
Travel Distance (km)	3564
Travel Time (hr)	103.0
Total Delay (hr)	27.7
Total Stops	3251
Fuel Used (I)	292.9

Interval #0 Information Seeding

Start Time	6:57
End Time	7:27
Total Time (min)	30
Volumes adjusted by Growth Fact	tors.
No data recorded this interval	

Start Time	7:27	
End Time	8:27	
Total Time (min)	60	
Volumes adjusted by Grov	th Factors	

Vehs Entered	2692	
Vehs Exited	2696	
Starting Vehs	114	
Ending Vehs	110	
Travel Distance (km)	3564	
Travel Time (hr)	103.0	
Total Delay (hr)	27.7	
Total Stops	3251	
Fuel Used (I)	292.9	

Movement	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB	SB
Directions Served	L	T	TR	L	L	Т	R	L	T	R	L	T
Maximum Queue (m)	32.4	38.4	43.8	43.0	47.8	86.4	77.5	47.4	77.2	96.8	34.8	41.3
Average Queue (m)	12.1	20.9	25.5	22.1	27.3	50.4	6.5	26.1	40.5	44.2	12.6	23.0
95th Queue (m)	25.8	34.4	40.5	35.6	40.9	83.2	29.3	50.8	69.1	72.2	23.2	38.8
Link Distance (m)		800.7	800.7		669.8	669.8			173.8	173.8		351.9
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (m)	40.0			70.0			70.0	40.0			40.0	
Storage Blk Time (%)		0				2	0	2	10		0	0
Queuing Penalty (veh)		0				1	0	4	11		0	0

Intersection: 3: Sidney St & Bell Blvd

Movement	SB	SB
Directions Served	T	R
Maximum Queue (m)	39.0	20.7
Average Queue (m)	11.9	8.5
95th Queue (m)	25.2	16.3
Link Distance (m)	351.9	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (m)		40.0
Storage Blk Time (%)	0	
Queuing Penalty (veh)	0	

Intersection: 6: Sidney St & Tracey Park Dr/Tracey St

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	40.1	28.6	71.5	69.8	63.8	54.7
Average Queue (m)	13.8	14.0	34.0	38.3	31.6	34.0
95th Queue (m)	28.5	25.7	59.4	60.6	50.0	48.3
Link Distance (m)	717.4	725.5	423.9	423.9	169.0	169.0
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 9: Sidney St & Loblaw

Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	R	T	TR	LT	T
Maximum Queue (m)	34.5	20.5	53.8	65.8	48.1	46.0
Average Queue (m)	13.9	8.7	23.9	31.1	26.9	24.1
95th Queue (m)	30.0	15.7	50.3	60.7	44.5	46.0
Link Distance (m)	149.5	149.5	169.0	169.0	173.8	173.8
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

	٠	→	•	•	←	•	1	†	~	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ⊅		ሻሻ	^	7	ሻ	^	7	ሻ	^	7
Volume (vph)	164	346	160	691	533	142	142	410	670	63	322	113
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.3	3.3	3.0	3.3	3.0	3.3	3.3	3.0	3.0	3.3	3.3
Total Lost time (s)	4.0	6.0		4.0	6.0	6.0	4.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	0.95		0.97	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.99	1.00	1.00	0.96	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00
Frt Protected	1.00	0.95 1.00		1.00 0.95	1.00	0.85 1.00	1.00 0.95	1.00 1.00	0.85 1.00	1.00 0.95	1.00 1.00	0.85
Flt Protected Satd. Flow (prot)	0.95 1620	3136		3173	1685	1428	1629	1818	1426	1634	3388	1.00 1447
Flt Permitted	0.25	1.00		0.29	1.00	1.00	0.44	1.00	1.00	0.42	1.00	1.00
Satd. Flow (perm)	418	3136		965	1685	1428	750	1818	1426	720	3388	1447
	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Peak-hour factor, PHF	178	376	174	751	579	154	154	446	728	68	350	123
Adj. Flow (vph) RTOR Reduction (vph)	0	39	0	0	0	66	0	0	295	00	330	85
Lane Group Flow (vph)	178	511	0	751	579	88	154	446	433	68	350	38
Confl. Peds. (#/hr)	170	311	U	751	317	1	3	440	13	13	330	3
Heavy Vehicles (%)	4%	6%	6%	3%	9%	4%	7%	1%	2%	2%	3%	6%
Turn Type	pm+pt	NA	070	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8	r Cilli	ριτι + ρι 1	6	r Cilli	r Cilli	2	FCIIII
Permitted Phases	4			8	U	8	6	U	6	2	2	2
Actuated Green, G (s)	53.0	43.0		71.0	57.0	57.0	57.0	57.0	57.0	43.0	43.0	43.0
Effective Green, g (s)	53.0	43.0		71.0	57.0	57.0	57.0	57.0	57.0	43.0	43.0	43.0
Actuated g/C Ratio	0.38	0.31		0.51	0.41	0.41	0.41	0.41	0.41	0.31	0.31	0.31
Clearance Time (s)	4.0	6.0		4.0	6.0	6.0	4.0	6.0	6.0	6.0	6.0	6.0
Lane Grp Cap (vph)	244	963		867	686	581	368	740	580	221	1040	444
v/s Ratio Prot	0.05	0.16		c0.15	0.34		0.03	0.25			0.10	
v/s Ratio Perm	0.22			c0.29		0.06	0.14		c0.30	0.09		0.03
v/c Ratio	0.73	0.53		0.87	0.84	0.15	0.42	0.60	0.75	0.31	0.34	0.09
Uniform Delay, d1	33.2	40.1		24.3	37.5	26.2	27.5	32.6	35.4	37.1	37.5	34.5
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	17.4	2.1		11.3	12.1	0.5	3.5	3.6	8.5	3.6	0.9	0.4
Delay (s)	50.6	42.2		35.6	49.6	26.8	31.0	36.2	43.9	40.7	38.4	34.9
Level of Service	D	D		D	D	С	С	D	D	D	D	С
Approach Delay (s)		44.3			40.1			39.8			37.9	
Approach LOS		D			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			40.5	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	icity ratio		0.86	_								
Actuated Cycle Length (s)			140.0		um of lost				20.0			
Intersection Capacity Utiliza	ation		93.7%	IC	U Level of	of Service	9		F			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	•	•	←	•	4	†	/	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			€1 }			€1 }	
Volume (vph)	51	22	22	59	37	60	27	1041	49	70	930	58
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			8.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		0.99			0.99			1.00			1.00	
Flpb, ped/bikes		0.99			0.99			1.00			1.00	
Frt		0.97			0.95			0.99			0.99	
Flt Protected		0.97			0.98			1.00			1.00	
Satd. Flow (prot)		1705			1650			3422			3347	
Flt Permitted		0.77			0.85			0.89			0.69	
Satd. Flow (perm)		1344			1435			3039			2325	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	55	24	24	64	40	65	29	1132	53	76	1011	63
RTOR Reduction (vph)	0	9	0	0	19	0	0	3	0	0	4	0
Lane Group Flow (vph)	0	94	0	0	150	0	0	1211	0	0	1146	0
Confl. Peds. (#/hr)	14		12	12		14	5		13	13		5
Heavy Vehicles (%)	0%	0%	0%	0%	0%	4%	0%	1%	0%	3%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			6			2	
Permitted Phases	8			4			6			2		
Actuated Green, G (s)		32.0			32.0			74.0			76.0	
Effective Green, g (s)		32.0			32.0			74.0			76.0	
Actuated g/C Ratio		0.27			0.27			0.62			0.63	
Clearance Time (s)		6.0			6.0			8.0			6.0	
Lane Grp Cap (vph)		358			382			1874			1472	
v/s Ratio Prot												
v/s Ratio Perm		0.07			c0.10			0.40			c0.49	
v/c Ratio		0.26			0.39			0.65			0.78	
Uniform Delay, d1		34.7			36.0			14.7			15.9	
Progression Factor		1.00			1.00			1.00			0.80	
Incremental Delay, d2		1.8			3.0			1.7			2.0	
Delay (s)		36.5			39.0			16.4			14.7	
Level of Service		D			D			В			В	
Approach Delay (s)		36.5			39.0			16.4			14.7	
Approach LOS		D			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			17.9	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.68									
Actuated Cycle Length (s)			120.0		um of lost				14.0			
Intersection Capacity Utiliza	ition		97.5%	IC	U Level o	of Service	:		F			
Analysis Period (min)			15									

Cane Configurations		•	•	†	/	>	↓	
Cane Configurations	Movement	WBL	WBR	NBT	NBR	SBL	SBT	
//olume (vph)	Lane Configurations	*	7	∱ 1≽			44	
Total Lost time (s)	Volume (vph)	195	196		203	203		
Cane Util. Factor 1.00 1.00 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.97 0.00 0.98 0.97 0.00 0.99 0.92 0	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Fit Protected	Total Lost time (s)	4.0	4.0	6.0			6.0	
Elt Protected 0.95 1.00 1.00 0.99 Sald, Flow (prot) 1711 1531 3333 3391 Elt Permitted 0.95 1.00 1.00 0.54 Sald, Flow (perm) 1711 1531 3333 1833 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 Adj, Flow (vph) 212 213 1060 221 221 999 ARTOR Reduction (vph) 0 138 15 0 0 0 0 Lane Group Flow (vph) 212 75 1266 0 0 1220 Eltrum Type Prot Perm NA Perm NA Perm NA Permitted Phases 8 2 6 Permitted Phases 8 2 6 Permitted Phases 8 6 Actuated Green, G (s) 21.0 21.0 89.0 89.0 Actuated Green, G (s) 21.0 21.0 89.0 89.0 Actuated g/C Ratio 0.18 0.18 0.74 0.74 Actuated g/C Ratio 0.18 0.18 0.74 0.74 Actuated g/C Ratio 0.71 0.28 0.51 0.90 Alli Deror Delay, d1 46.6 43.0 6.5 12.0 Artor Delay, d1 46.6 43.0 6.5 12.0 Approach Delay, d2 13.3 2.6 0.6 9.6 Approach Delay (s) 52.7 2.1 21.6 Approach LOS D A C C Approach LOS D A C C Approach Delay (s) 52.7 2.1 21.6 Approach Capacity Utilization 88.9% ICU Level of Service E Analysis Period (min) 15	Lane Util. Factor	1.00	1.00	0.95			0.95	
Satd. Flow (prot) 1711 1531 3333 3391 It Permitted 0.95 1.00 1.00 0.54 Satd. Flow (perm) 1711 1531 3333 1833 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.94 Adj. Flow (vph) 212 213 1060 221 221 999 ATOR Reduction (vph) 0 138 15 0 0 0 0 Lane Group Flow (vph) 212 75 1266 0 0 1220 Furn Type Prot Perm NA Perm NA Permetted Phases 8 6 Actuated Green, G (s) 21.0 21.0 89.0 89.0 Effective Green, g (s) 21.0 21.0 89.0 89.0 Actuated g/C Ratio 0.18 0.18 0.74 0.74 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 299 267 2471 1359 It's Ratio Perm 0.05 0.67 It's Ratio Perm 0.05 0.66 Progression Factor 1.00 1.00 0.23 1.00 Inform Delay, d1 46.6 43.0 6.5 12.0 Progression Factor 1.00 1.00 0.23 1.00 Inform Delay, d1 46.6 43.0 6.5 12.0 Progression Factor 1.00 1.00 0.23 1.00 Incremental Delay, d2 13.3 2.6 0.6 9.6 Delay (s) 59,9 45.6 2.1 21.6 Approach LOS D A Cutaletor Service B Actuated Cycle Length (s) 17.6 HCM 2000 Level of Service B Actuated Cycle Length (s) 12.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 88.9% ICU Level of Service E Analysis Period (min) 15	Frt	1.00	0.85	0.97			1.00	
Elt Permitted 0.95 1.00 1.00 0.54 Sald. Flow (perm) 1711 1531 3333 1833 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.94 Adj. Flow (vph) 212 213 1060 221 221 999 RTOR Reduction (vph) 0 138 15 0 0 0 0 Lane Group Flow (vph) 212 75 1266 0 0 1220 Furn Type Prot Perm NA Perm NA Perm NA Perm NA Permitted Phases 8 2 6 Permitted Phases 8 6 6 Returated Green, G (s) 21.0 21.0 89.0 89.0 Returated green (s) 21.0 21.0 Returated gr	Flt Protected	0.95	1.00	1.00			0.99	
Satid Flow (perm) 1711 1531 3333 1833 1833 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 212 213 1060 221 221 999 RTOR Reduction (vph) 0 138 15 0 0 0 Cane Group Flow (vph) 212 75 1266 0 0 1220 Turn Type	Satd. Flow (prot)	1711	1531	3333			3391	
Deak-hour factor, PHF 0.92 0.02	Flt Permitted	0.95	1.00	1.00			0.54	
Adj. Flow (vph) 212 213 1060 221 221 999 RTOR Reduction (vph) 0 138 15 0 0 0 0 Lane Group Flow (vph) 212 75 1266 0 0 1220 Turn Type Prot Perm NA Perm NA Perotected Phases 8 2 6 Percentited Phases 8 6 Actuated Green, G (s) 21.0 21.0 89.0 89.0 Effective Green, g (s) 21.0 21.0 89.0 89.0 Actuated g/C Ratio 0.18 0.18 0.74 0.74 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 299 267 2471 13559 I/s Ratio Prot C0.12 0.38 I/s Ratio Prot C0.12 0.38 I/s Ratio Port C0.12 0.38 I/s Ratio Port C0.12 0.38 I/s Ratio Port C0.12 0.50 Progression Factor 1.00 1.00 0.23 1.00 Inform Delay, d1 46.6 43.0 6.5 12.0 Progression Factor 1.00 1.00 0.23 1.00 Incremental Delay, d2 13.3 2.6 0.6 9.6 Delay (s) 59.9 45.6 2.1 21.6 Approach LOS D A C C Approach LOS D A C C Intersection Summary I CM 2000 Control Delay 17.6 HCM 2000 Level of Service B Actuated Cycle Length (s) 12.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 88.9% ICU Level of Service E E Analysis Period (min) 15	Satd. Flow (perm)	1711	1531	3333			1833	
RTOR Reduction (vph) 0 138 15 0 0 0 0 0 1220 Furn Type Prot Perm NA Perm NA Perotected Phases 8 2 6 Actuated Green, G (s) 21.0 21.0 89.0 89.0 Actuated Green, G (s) 21.0 21.0 89.0 89.0 Actuated g/C Ratio 0.18 0.18 0.74 0.74 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 299 267 2471 1359 I/s Ratio Prot Co.12 0.38 I/s Ratio Perm 0.05 0.67 I/c Ratio 0.71 0.28 0.51 0.90 Jiniform Delay, d1 46.6 43.0 6.5 12.0 Perogression Factor 1.00 1.00 0.23 1.00 Perogression Factor 1.00 1.00 0.23 1.00 Perogression Factor 1.00 1.00 0.23 1.00 Incremental Delay, d2 13.3 2.6 0.6 9.6 Delay (s) 59.9 45.6 2.1 21.6 Approach Delay (s) 52.7 2.1 21.6 Approach Delay (s) 52.7 2.1 21.6 Approach Delay (s) 52.7 2.1 21.6 Approach LOS D A CC Intersection Summary HCM 2000 Control Delay 17.6 HCM 2000 Level of Service B Actuated Cycle Length (s) 12.0 Intersection Capacity Utilization 88.9% ICU Level of Service E E D A CAULAGE OF Service E Analysis Period (min) 15	Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
RTOR Reduction (vph) 0 138 15 0 0 0 0 0 1220 Furn Type Prot Perm NA Perm NA Permotected Phases 8 2 6 Actuated Green, G (s) 21.0 21.0 89.0 89.0 89.0 64 Actuated Green, G (s) 21.0 21.0 89.0 89.0 89.0 64 Actuated g/C Ratio 0.18 0.18 0.74 0.74 Clearance Time (s) 4.0 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	Adj. Flow (vph)	212	213	1060	221	221	999	
Anne Group Flow (vph) 212 75 1266 0 0 1220	RTOR Reduction (vph)	0	138	15	0	0	0	
Furn Type	Lane Group Flow (vph)	212	75	1266	0	0	1220	
Protected Phases 8 2 6 Permitted Phases 8 6 Actuated Green, G (s) 21.0 21.0 89.0 89.0 Effective Green, g (s) 21.0 21.0 89.0 89.0 Actuated g/C Ratio 0.18 0.18 0.74 0.74 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 299 267 2471 1359 I/s Ratio Prot c0.12 0.38 I/s Ratio Perm 0.05 0.51 0.90 Uniform Delay, d1 46.6 43.0 6.5 12.0 Progression Factor 1.00 1.00 0.23 1.00 Incremental Delay, d2 13.3 2.6 0.6 9.6 Delay (s) 59.9 45.6 2.1 21.6 Approach Delay (s) 52.7 2.1 21.6 Approach LOS D A C Intersection Summary HCM 2000 Control Delay 17.6 HCM 2000 Level of Service B Actuated Cycle Length (s) 120.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 88.9% ICU Level of Service E Analysis Period (min) 15	Turn Type	Prot	Perm	NA		Perm	NA	
Permitted Phases 8 6 Actuated Green, G (s) 21.0 21.0 89.0 89.0 Effective Green, g (s) 21.0 21.0 89.0 89.0 Actuated g/C Ratio 0.18 0.18 0.74 0.74 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 299 267 2471 1359 1//s Ratio Prot c0.12 0.38 1//s Ratio Perm 0.05 c0.67 1//c Ratio 0.71 0.28 0.51 0.90 Uniform Delay, d1 46.6 43.0 6.5 12.0 Progression Factor 1.00 1.00 0.23 1.00 Incremental Delay, d2 13.3 2.6 0.6 9.6 Delay (s) 59.9 45.6 2.1 21.6 Approach Delay (s) 52.7 2.1 21.6 Approach LOS D A C Intersection Summary HCM 2000 Control Delay 17.6 HCM 2000 Level of Service B Actuated Cycle Length (s) 120.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 88.9% ICU Level of Service E Analysis Period (min) 15	Protected Phases	8		2			6	
Effective Green, g (s) 21.0 21.0 89.0 89.0 Actuated g/C Ratio 0.18 0.18 0.74 0.74 Clearance Time (s) 4.0 4.0 6.0 6.0 Anne Grp Cap (vph) 299 267 2471 1359 I/s Ratio Prot c0.12 0.38 I/s Ratio Perm 0.05 c0.67 I/c Ratio 0.71 0.28 0.51 0.90 Juliform Delay, d1 46.6 43.0 6.5 12.0 Progression Factor 1.00 1.00 0.23 1.00 Incremental Delay, d2 13.3 2.6 0.6 9.6 Delay (s) 59.9 45.6 2.1 21.6 Approach Delay (s) 52.7 2.1 21.6 Approach LOS D A C Intersection Summary I-CM 2000 Control Delay 17.6 HCM 2000 Level of Service B Actuated Cycle Length (s) 120.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 88.9% ICU Level of Service E Analysis Period (min) 15	Permitted Phases		8			6		
Effective Green, g (s) 21.0 21.0 89.0 89.0 Actuated g/C Ratio 0.18 0.18 0.74 0.74 Clearance Time (s) 4.0 4.0 6.0 6.0 Anne Grp Cap (vph) 299 267 2471 1359 I/s Ratio Prot c0.12 0.38 I/s Ratio Perm 0.05 c0.67 I/c Ratio 0.71 0.28 0.51 0.90 Iniform Delay, d1 46.6 43.0 6.5 12.0 Progression Factor 1.00 1.00 0.23 1.00 Incremental Delay, d2 13.3 2.6 0.6 9.6 Delay (s) 59.9 45.6 2.1 21.6 Approach Delay (s) 52.7 2.1 21.6 Approach LOS D A C Intersection Summary I-CM 2000 Control Delay 17.6 HCM 2000 Level of Service B Actuated Cycle Length (s) 120.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 88.9% ICU Level of Service E Analysis Period (min) 15	Actuated Green, G (s)	21.0		89.0			89.0	
Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 299 267 2471 1359 I/s Ratio Prot c0.12 0.38 I/s Ratio Perm 0.05 c0.67 I/c Ratio 0.71 0.28 0.51 0.90 Uniform Delay, d1 46.6 43.0 6.5 12.0 Progression Factor 1.00 1.00 0.23 1.00 Incremental Delay, d2 13.3 2.6 0.6 9.6 Delay (s) 59.9 45.6 2.1 21.6 Approach Delay (s) 52.7 2.1 21.6 Approach LOS D A C Intersection Summary ICM 2000 Control Delay 17.6 HCM 2000 Level of Service B Intersection Capacity (s) 120.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 88.9% ICU Level of Service E	Effective Green, g (s)	21.0	21.0	89.0			89.0	
Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 299 267 2471 1359 I/Is Ratio Perm 0.05 0.38 I/Is Ratio Perm 0.05 0.067 I/Is Ratio Perm 0.05 0.067 I/Is Ratio Perm 0.05 0.06 I/Is Ratio Perm 0.05 0.00 I/Is Ratio Perm 0.09 0.00 I/Is Ratio Perm 0.00 0.00 Interpretation Perm 0.00 0.023 1.00 Interpretation Perm 0.00 0.00 0	Actuated g/C Ratio	0.18	0.18	0.74			0.74	
Als Ratio Prot c0.12 0.38 Als Ratio Perm 0.05 c0.67 Als Ratio Perm 0.09 c0.67 Als Ratio Perm 0.09 c0.90 Date of Service 10.00 0.23 10.00 December Service 10.00 10.00 10.00 10.00 Alc Reproach Delay (s) 12.0 12.0 10.00 10.00 Alc Luated Cycle Length (s) 120.0 Sum of lost time (s) 10.00 Alc Luated Cycle Length (s) 120.0 Sum of lost time (s) 10.00 Analysis Period (min) 15	Clearance Time (s)	4.0	4.0	6.0			6.0	
A/s Ratio Prot c0.12 0.38 A/s Ratio Perm 0.05 c0.67 A/c Ratio 0.71 0.28 0.51 0.90 Uniform Delay, d1 46.6 43.0 6.5 12.0 Progression Factor 1.00 1.00 0.23 1.00 Incremental Delay, d2 13.3 2.6 0.6 9.6 Delay (s) 59.9 45.6 2.1 21.6 Level of Service E D A C Approach Delay (s) 52.7 2.1 21.6 A C Approach LOS D A C A C A C Intersection Summary HCM 2000 Control Delay 17.6 HCM 2000 Level of Service B Actuated Cycle Length (s) 120.0 Sum of lost time (s) 10.0 Analysis Period (min) 15	Lane Grp Cap (vph)	299	267	2471			1359	
Association O.05 C0.67 Association 0.71 0.28 0.51 0.90 Uniform Delay, d1 46.6 43.0 6.5 12.0 Progression Factor 1.00 1.00 0.23 1.00 Incremental Delay, d2 13.3 2.6 0.6 9.6 Delay (s) 59.9 45.6 2.1 21.6 Level of Service E D A C Approach Delay (s) 52.7 2.1 21.6 Approach LOS D A C Intersection Summary Intersection Summary Intersection Capacity ratio 0.86 Actuated Cycle Length (s) 120.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 88.9% ICU Level of Service E Analysis Period (min) 15	v/s Ratio Prot							
Action 0.71 0.28 0.51 0.90 Uniform Delay, d1 46.6 43.0 6.5 12.0 Progression Factor 1.00 1.00 0.23 1.00 Incremental Delay, d2 13.3 2.6 0.6 9.6 Delay (s) 59.9 45.6 2.1 21.6 Level of Service E D A C Approach Delay (s) 52.7 2.1 21.6 Approach LOS D A C Intersection Summary HCM 2000 Control Delay 17.6 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.86<	v/s Ratio Perm		0.05				c0.67	
Uniform Delay, d1	v/c Ratio	0.71		0.51				
Progression Factor 1.00 1.00 0.23 1.00 Incremental Delay, d2 13.3 2.6 0.6 9.6 Delay (s) 59.9 45.6 2.1 21.6 Level of Service E D A C Approach Delay (s) 52.7 2.1 21.6 Approach LOS D A C **PACM 2000 Control Delay ### Actuated Cycle Length (s) ### Actuated Cycle Length (min) ### Actuated Cycle Lengt	Uniform Delay, d1							
Company Comp	Progression Factor							
Delay (s) 59.9 45.6 2.1 21.6 Level of Service E D A C Approach Delay (s) 52.7 2.1 21.6 Approach LOS D A C Intersection Summary HCM 2000 Control Delay 17.6 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.86 Actuated Cycle Length (s) 120.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 88.9% ICU Level of Service E Analysis Period (min) 15	Incremental Delay, d2							
Level of Service E D A C Approach Delay (s) 52.7 2.1 21.6 Approach LOS D A C Intersection Summary HCM 2000 Control Delay 17.6 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.86 Actuated Cycle Length (s) 120.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 88.9% ICU Level of Service E Analysis Period (min) 15	Delay (s)	59.9	45.6	2.1			21.6	
Approach LOS D A C Intersection Summary HCM 2000 Control Delay 17.6 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.86 Actuated Cycle Length (s) 120.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 88.9% ICU Level of Service E Analysis Period (min) 15	Level of Service	E	D	А			С	
Approach LOS D A C Intersection Summary HCM 2000 Control Delay 17.6 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.86 Actuated Cycle Length (s) 120.0 Sum of lost time (s) 10.0 ICU Level of Service E Analysis Period (min) 15	Approach Delay (s)							
HCM 2000 Control Delay 17.6 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.86 Actuated Cycle Length (s) 120.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 88.9% ICU Level of Service E Analysis Period (min) 15	Approach LOS	D		А			С	
HCM 2000 Control Delay 17.6 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.86 Actuated Cycle Length (s) 120.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 88.9% ICU Level of Service E Analysis Period (min) 15	Intersection Summary							
ACM 2000 Volume to Capacity ratio Actuated Cycle Length (s) 120.0 Sum of lost time (s) 10.0 ICU Level of Service E Analysis Period (min) 15				17.6	Н	CM 2000	Level of Service	В
Actuated Cycle Length (s) 120.0 Sum of lost time (s) 10.0 ntersection Capacity Utilization 88.9% ICU Level of Service E Analysis Period (min) 15		acity ratio				2.7. 2000		
ntersection Capacity Utilization 88.9% ICU Level of Service E Analysis Period (min) 15					Si	um of lost	time (s)	10.0
Analysis Period (min) 15	3 0 17	ation						
								_
	c Critical Lane Group							

Start Time	6:57
End Time	8:27
Total Time (min)	90
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	4322
Vehs Exited	4294
Starting Vehs	202
Ending Vehs	230
Travel Distance (km)	5548
Travel Time (hr)	198.0
Total Delay (hr)	80.3
Total Stops	5535
Fuel Used (I)	492.6

Interval #0 Information Seeding

Start Time	6:57						
End Time	7:27						
Total Time (min)	30						
Volumes adjusted by Growth Factors.							
No data recorded this interval							

Start Time	7:27	
End Time	8:27	
Total Time (min)	60	
Volumes adjusted by Grow	th Factors.	

Vehs Entered	4322	
Vehs Exited	4294	
Starting Vehs	202	
Ending Vehs	230	
Travel Distance (km)	5548	
Travel Time (hr)	198.0	
Total Delay (hr)	80.3	
Total Stops	5535	
Fuel Used (I)	492.6	

Movement	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB	SB
Directions Served	L	T	TR	L	L	T	R	L	T	R	L	T
Maximum Queue (m)	47.4	85.5	110.4	77.3	243.3	179.1	77.5	47.4	167.9	177.3	47.4	81.7
Average Queue (m)	38.0	52.6	58.8	52.8	72.1	100.9	39.8	25.5	83.6	81.1	21.2	42.9
95th Queue (m)	59.7	81.7	90.7	83.5	156.1	157.4	94.2	48.9	154.9	159.3	46.6	69.6
Link Distance (m)		800.7	800.7		669.8	669.8			166.5	166.5		351.9
Upstream Blk Time (%)									1	1		
Queuing Penalty (veh)									8	4		
Storage Bay Dist (m)	40.0			70.0			70.0	40.0			40.0	
Storage Blk Time (%)	16	14		6	13	17	0	0	28			16
Queuing Penalty (veh)	28	23		22	43	25	0	1	39			10

Intersection: 3: Sidney St & Bell Blvd

Movement	SB	SB
Directions Served	T	R
Maximum Queue (m)	96.0	47.4
Average Queue (m)	31.6	15.3
95th Queue (m)	68.0	33.0
Link Distance (m)	351.9	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (m)		40.0
Storage Blk Time (%)	6	0
Queuing Penalty (veh)	7	0

Intersection: 6: Sidney St & Tracey Park Dr/Tracey St

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	41.2	52.2	174.2	181.7	86.2	94.3
Average Queue (m)	17.2	23.9	60.2	61.9	42.6	45.2
95th Queue (m)	31.4	40.4	115.3	119.4	71.9	72.4
Link Distance (m)	717.4	725.5	423.9	423.9	176.4	176.4
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 9: Sidney St & Loblaw

Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	R	T	TR	LT	T
Maximum Queue (m)	92.6	48.9	65.6	104.9	172.2	184.6
Average Queue (m)	49.3	22.0	16.6	23.6	95.7	88.9
95th Queue (m)	79.5	41.9	44.0	60.7	164.5	164.0
Link Distance (m)	240.6	240.6	176.4	176.4	166.5	166.5
Upstream Blk Time (%)					6	1
Queuing Penalty (veh)					36	7
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

Start Time	6:57
End Time	8:27
Total Time (min)	90
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	1764
Vehs Exited	1753
Starting Vehs	68
Ending Vehs	79
Travel Distance (km)	2435
Travel Time (hr)	73.7
Total Delay (hr)	22.4
Total Stops	1969
Fuel Used (I)	201.5

Interval #0 Information Seeding

Start Time	6:57
End Time	7:27
Total Time (min)	30
Volumes adjusted by Growth Fac	ctors.
No data recorded this interval	

Interval #1 Information Recording

		<u> </u>		
Start Time	7:27			
End Time	8:27			
Total Time (min)	60			
Volumes adjusted by Gro	wth Factors.			

1764	
1753	
68	
79	
2435	
73.7	
22.4	
1969	
201.5	
	1753 68 79 2435 73.7 22.4 1969

2014 Existing Traffic SimTraffic Report CIMA Canada Inc. SimTraffic Report

Movement	EB	EB	EB	В9	WB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	TR	T	L	L	T	R	LT	R	L	TR
Maximum Queue (m)	27.3	39.4	40.1	8.5	15.5	26.3	81.6	77.5	86.9	61.2	47.4	77.0
Average Queue (m)	11.6	19.7	23.8	0.5	6.0	14.9	30.9	6.0	41.7	22.8	12.5	37.9
95th Queue (m)	26.7	34.2	37.2	3.8	15.8	24.5	59.4	28.8	77.3	48.9	32.8	67.2
Link Distance (m)		27.4	27.4	751.6		670.3	670.3		355.4	355.4		351.9
Upstream Blk Time (%)	0	3	6									
Queuing Penalty (veh)	0	0	0									
Storage Bay Dist (m)	40.0				70.0			70.0			40.0	
Storage Blk Time (%)	0	3					1	0				7
Queuing Penalty (veh)	0	2					0	0				4

Intersection: 6: Sidney St & Tracey Park Dr/Tracey St

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	40.8	28.1	65.4	60.3	75.3	72.2
Average Queue (m)	13.2	12.4	36.6	39.7	38.5	41.7
95th Queue (m)	30.6	25.0	56.2	62.2	61.7	62.3
Link Distance (m)	717.3	725.4	416.9	416.9	355.4	355.4
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

Network wide Queuing Penalty: 5

2014 Existing Traffic SimTraffic Report CIMA Canada Inc. SimTraffic Report Page 2

	۶	→	•	•	+	•	•	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ }		44	†	7		4	7	ň	ĵ»	
Volume (vph)	119	264	139	329	300	79	94	291	395	50	261	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.3	3.3	3.0	3.3	3.0	3.3	3.3	3.0	3.0	3.3	3.3
Total Lost time (s)	4.0	6.0		4.0	6.0	6.0		6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95		0.97	1.00	1.00		1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.98		1.00	0.96	1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		1.00	1.00	0.99	1.00	
Frt	1.00	0.95		1.00	1.00	0.85		1.00	0.85	1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00	1.00		0.99	1.00	0.95	1.00	
Satd. Flow (prot)	1619	3122		3173	1685	1414		1770	1426	1631	1730	
Flt Permitted	0.37	1.00		0.37	1.00	1.00		0.66	1.00	0.50	1.00	
Satd. Flow (perm)	632	3122		1239	1685	1414		1183	1426	851	1730	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	129	287	151	358	326	86	102	316	429	54	284	48
RTOR Reduction (vph)	0	49	0	0	0	60	0	0	208	0	5	0
Lane Group Flow (vph)	129	389	0	358	326	26	0	418	221	54	327	0
Confl. Peds. (#/hr)	1					1	3		13	13		3
Heavy Vehicles (%)	4%	6%	6%	3%	9%	4%	7%	1%	2%	2%	3%	6%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	
Protected Phases	7	4		3	8		1	6			2	
Permitted Phases	4			8		8	6		6	2		
Actuated Green, G (s)	50.0	40.0		54.0	42.0	42.0		72.0	72.0	60.0	60.0	
Effective Green, g (s)	50.0	40.0		54.0	42.0	42.0		72.0	72.0	60.0	60.0	
Actuated g/C Ratio	0.36	0.29		0.39	0.30	0.30		0.51	0.51	0.43	0.43	
Clearance Time (s)	4.0	6.0		4.0	6.0	6.0		6.0	6.0	6.0	6.0	
Lane Grp Cap (vph)	296	892		643	505	424		641	733	364	741	
v/s Ratio Prot	0.03	0.12		c0.05	c0.19			c0.04			0.19	
v/s Ratio Perm	0.12	0.44		0.17	0.75	0.02		c0.30	0.15	0.06	0.44	
v/c Ratio	0.44	0.44		0.56	0.65	0.06		0.65	0.30	0.15	0.44	
Uniform Delay, d1	32.2	40.8		30.3	42.5	34.9		24.8	19.5	24.4	28.2	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	4.6	1.6		3.5	6.2	0.3		5.1	1.1	0.9	1.9	
Delay (s)	36.8	42.4		33.7	48.8	35.2		29.9	20.6	25.3	30.1	
Level of Service	D	D		С	D	D		C	С	С	C	
Approach Delay (s)		41.1			40.3			25.2			29.4	
Approach LOS		D			D			С			С	
Intersection Summary												
HCM 2000 Control Delay			33.9	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.67									
Actuated Cycle Length (s)			140.0		um of lost				20.0			
Intersection Capacity Utilizat	tion		80.5%	IC	CU Level	of Service	9		D			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	→	•	•	←	•	•	†	/	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			414			414	
Volume (vph)	42	18	18	49	31	50	22	698	41	58	612	48
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			8.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		0.99			0.99			1.00			1.00	
Flpb, ped/bikes		0.99			0.99			1.00			1.00	
Frt		0.97			0.95			0.99			0.99	
Flt Protected		0.97			0.98			1.00			1.00	
Satd. Flow (prot)		1705			1650			3414			3336	
Flt Permitted		0.76			0.86			0.60			0.78	
Satd. Flow (perm)		1336			1448			2036			2606	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	46	20	20	53	34	54	24	759	45	63	665	52
RTOR Reduction (vph)	0	9	0	0	18	0	0	3	0	0	4	0
Lane Group Flow (vph)	0	77	0	0	123	0	0	825	0	0	776	0
Confl. Peds. (#/hr)	14		12	12		14	5		13	13		5
Heavy Vehicles (%)	0%	0%	0%	0%	0%	4%	0%	1%	0%	3%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			1			2	
Permitted Phases	8			4			1			2		
Actuated Green, G (s)		24.0			24.0			42.0			34.0	
Effective Green, g (s)		24.0			24.0			42.0			34.0	
Actuated g/C Ratio		0.20			0.20			0.35			0.28	
Clearance Time (s)		6.0			6.0			8.0			6.0	
Lane Grp Cap (vph)		267			289			712			738	
v/s Ratio Prot												
v/s Ratio Perm		0.06			c0.08			c0.41			c0.30	
v/c Ratio		0.29			0.42			1.16			1.05	
Uniform Delay, d1		40.8			42.0			39.0			43.0	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		2.7			4.5			86.5			47.4	
Delay (s)		43.5			46.5			125.5			90.4	
Level of Service		D			D			F			F	
Approach Delay (s)		43.5			46.5			125.5			90.4	
Approach LOS		D			D			F			F	
Intersection Summary												
HCM 2000 Control Delay			100.6	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	city ratio		0.94									
Actuated Cycle Length (s)			120.0		um of lost				20.0			
Intersection Capacity Utilizat	tion		78.1%	IC	:U Level d	of Service			D			
Analysis Period (min)			15									

21/08/2014

Summary of All Intervals

Start Time	6:57
End Time	8:27
Total Time (min)	90
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	2655
Vehs Exited	2625
Starting Vehs	101
Ending Vehs	131
Travel Distance (km)	3668
Travel Time (hr)	121.6
Total Delay (hr)	44.7
Total Stops	3206
Fuel Used (I)	311.5

Interval #0 Information Seeding

Start Time	6:57
End Time	7:27
Total Time (min)	30
Volumes adjusted by Growth Fa	ictors.
No data recorded this interval	

Start Time	7:27		
End Time	8:27		
Total Time (min)	60		
Volumes adjusted by Grov	wth Factors.		

Vehs Entered	2655
Vehs Exited	2625
Starting Vehs	101
Ending Vehs	131
Travel Distance (km)	3668
Travel Time (hr)	121.6
Total Delay (hr)	44.7
Total Stops	3206
Fuel Used (I)	311.5

Movement	EB	EB	EB	В9	WB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	TR	Т	L	L	Т	R	LT	R	L	TR
Maximum Queue (m)	30.2	51.7	51.4	119.7	53.1	64.1	110.4	77.4	111.5	112.2	47.3	79.9
Average Queue (m)	19.7	36.7	38.7	25.3	24.0	33.3	56.7	12.7	67.3	40.5	12.8	48.0
95th Queue (m)	32.8	55.3	53.2	76.9	42.1	51.3	93.9	41.3	110.4	91.3	34.6	73.9
Link Distance (m)		30.3	30.3	757.2		670.3	670.3		355.4	355.4		351.9
Upstream Blk Time (%)	5	21	19									
Queuing Penalty (veh)	0	0	0									
Storage Bay Dist (m)	40.0				70.0			70.0			40.0	
Storage Blk Time (%)	5	21				0	6	0			0	14
Queuing Penalty (veh)	6	25				0	5	0			0	7

Intersection: 6: Sidney St & Tracey Park Dr/Tracey St

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	37.2	41.8	89.6	94.6	111.2	129.4
Average Queue (m)	13.9	21.4	57.0	62.9	62.4	68.1
95th Queue (m)	28.4	37.3	75.0	83.4	94.3	104.8
Link Distance (m)	717.3	725.4	416.9	416.9	355.4	355.4
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

	۶	→	•	•	•	•	•	†	~	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ⊅		ሻሻ	^	7		4	7	Ť	∱ ⊅	
Volume (vph)	82	247	100	244	333	43	118	256	364	70	230	75
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.3	3.3	3.0	3.3	3.0	3.3	3.3	3.0	3.0	3.3	3.3
Total Lost time (s)	4.0	6.0		4.0	6.0	6.0		6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95		0.97	1.00	1.00		1.00	1.00	1.00	0.95	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.99		1.00	0.98	1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		1.00	1.00	0.99	1.00	
Frt	1.00	0.96		1.00	1.00	0.85		1.00	0.85	1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00	1.00		0.98	1.00	0.95	1.00	
Satd. Flow (prot)	1619	3137		3171	1685	1429		1757	1443	1641	3239	
Flt Permitted	0.39	1.00		0.45	1.00	1.00		0.65	1.00	0.52	1.00	
Satd. Flow (perm)	657	3137	0.00	1515	1685	1429	0.00	1164	1443	904	3239	0.00
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	89	268	109	265	362	47	128	278	396	76	250	82
RTOR Reduction (vph)	0	49	0	0	0	32	0	0	229	0	36	0
Lane Group Flow (vph)	89	328	0	265	362	15	0	406	167	76	296	0
Confl. Peds. (#/hr)	1	/ 0/	2	2 3%	9%	1 4%	70/	10/	10 2%	10	3%	/ 0/
Heavy Vehicles (%)	4%	6%	6%				7%	1%		2%		6%
Turn Type Protected Phases	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	
	7	4		3	8	0	1	6	/	2	2	
Permitted Phases	4 34.0	26.0		8 38.0	28.0	8 28.0	6	38.0	6 38.0	2 26.0	26.0	
Actuated Green, G (s)	34.0	26.0		38.0	28.0	28.0		38.0	38.0	26.0	26.0	
Effective Green, g (s) Actuated g/C Ratio	0.38	0.29		0.42	0.31	0.31		0.42	0.42	0.29	0.29	
Clearance Time (s)	4.0	6.0		4.0	6.0	6.0		6.0	6.0	6.0	6.0	
	333	906		823	524	444		544	609	261	935	
Lane Grp Cap (vph) v/s Ratio Prot	0.02	0.10		c0.04	c0.21	444		c0.07	009	201	0.09	
v/s Ratio Prot v/s Ratio Perm	0.02	0.10		0.10	CU.Z I	0.01		c0.07	0.12	0.08	0.09	
v/c Ratio	0.08	0.36		0.10	0.69	0.01		0.75	0.12	0.06	0.32	
Uniform Delay, d1	18.8	25.4		16.5	27.2	21.6		21.9	17.0	24.8	25.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	2.0	1.00		1.00	7.3	0.1		9.0	1.00	2.8	0.9	
Delay (s)	20.8	26.5		17.5	34.5	21.7		31.0	18.1	27.7	25.9	
Level of Service	20.0 C	20.5 C		17.3 B	34.3 C	C C		C C	В	27.7 C	23.9 C	
Approach Delay (s)	U	25.4		U	26.9	U		24.6	U	U	26.3	
Approach LOS		C			C			C			C	
Intersection Summary												
HCM 2000 Control Delay			25.7	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.72									
Actuated Cycle Length (s)			90.0		um of los				20.0			
Intersection Capacity Utiliza	ition		85.0%	IC	CU Level	of Service	9		Е			
Analysis Period (min)			15									
c Critical Lane Group												

۶	-	•	•	←	•	•	†	/	>	ļ	4
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	4			4			र्सी के			414	
39	16	22	28	10	55	15	613	33	72	465	33
1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
	6.0			6.0			8.0			6.0	
	1.00			1.00			0.95			0.95	
							1.00			1.00	
	0.98			0.99			1.00			0.99	
	0.83										
	1442			1428			2196			2467	
0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
42	17	24	30	11	60	16	666	36	78	505	36
0	12	0	0	44	0	0	3	0	0	4	0
0	71	0	0	57	0	0	715	0	0	615	0
15		4	4		5			5	5		
0%	0%	0%	0%	0%	7%	0%	2%	0%	0%	4%	0%
Perm	NA		Perm	NA		Perm	NA		Perm	NA	
	8			4			1			2	
8			4			1			2		
	24.0										
	24.0			24.0			43.0			33.0	
	6.0			6.0			8.0			6.0	
	288			285			786			678	
	c0.05			0.04			c0.33			c0.25	
	D			D			D			E	
		54.6	Н	CM 2000	Level of	Service		D			
y ratio		0.75									
		120.0	S	um of lost	time (s)			20.0			
n		71.1%	IC	CU Level of	of Service	<u> </u>		С			
		15									
	0.92 42 0 0 15 0% Perm 8	BBL EBT 39 16 1900 1900 6.0 1.00 0.99 0.99 0.96 0.98 1696 0.83 1442 0.92 0.92 42 17 0 12 0 71 15 0% 0% Perm NA 8 8 24.0 24.0 0.20 6.0 288 c0.05 0.25 40.4 1.00 2.0 42.4 D	BBL EBT EBR 39 16 22 1900 1900 1900 6.0 1.00 0.99 0.99 0.96 0.98 1696 0.83 1442 0.92 0.92 0.92 42 17 24 0 12 0 0 71 0 15 4 0% 0% 0% Perm NA 8 8 24.0 24.0 0.20 6.0 288 c0.05 0.25 40.4 1.00 2.0 42.4 D 42.4 D 42.4 D y ratio 54.6 0.75 120.0 in 71.1%	EBL EBT EBR WBL 39 16 22 28 1900 1900 1900 1900 6.0 1.00 0.99 0.99 0.99 0.99 0.98 1696 0.83 1442 0.92 0.92 0.92 0.92 42 17 24 30 0 12 0 0 0 71 0 0 15 4 4 0% 0% 0% 0% 0% Perm NA Perm 8 8 8 4 24.0 24.0 0.20 6.0 288 co.05 0.25 40.4 1.00 2.0 42.4 D 42.4 D 42.4 D y ratio 54.6 H y ratio 71.1%	## Company Com	## Company Com	## Company Com	## Color Figure 19 Figure	BBL BBT BBR WBL WBT WBR NBL NBT NBR	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT 39 16 22 28 10 55 15 613 33 72 465 1900 1900 1900 1900 1900 1900 1900 1900

c Critical Lane Group

Start Time	6:57
End Time	8:27
Total Time (min)	90
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	2538
Vehs Exited	2511
Starting Vehs	77
Ending Vehs	104
Travel Distance (km)	3241
Travel Time (hr)	99.9
Total Delay (hr)	31.1
Total Stops	2828
Fuel Used (I)	274.8

Interval #0 Information Seeding

Start Time	6:57
End Time	7:27
Total Time (min)	30
Volumes adjusted by Growth Fac	tors.
No data recorded this interval.	

Start Time	7:27		
End Time	8:27		
Total Time (min)	60		
Volumes adjusted by Grov	wth Factors.		

Vehs Entered	2538	
Vehs Exited	2511	
Starting Vehs	77	
Ending Vehs	104	
Travel Distance (km)	3241	
Travel Time (hr)	99.9	
Total Delay (hr)	31.1	
Total Stops	2828	
Fuel Used (I)	274.8	

Movement	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB	SB
Directions Served	L	T	TR	L	L	T	R	LT	R	L	T	TR
Maximum Queue (m)	28.6	51.1	55.7	27.6	28.8	117.6	77.4	126.6	75.1	47.1	64.6	56.7
Average Queue (m)	14.8	19.3	23.7	14.7	17.5	52.8	12.5	61.6	27.8	13.9	29.0	21.1
95th Queue (m)	26.4	35.9	43.1	24.8	27.3	88.4	43.1	110.2	55.9	30.7	47.5	42.6
Link Distance (m)		804.2	804.2		670.0	670.0		173.8	173.8		351.9	351.9
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (m)	40.0			70.0			70.0			40.0		
Storage Blk Time (%)		0				4	0				2	
Queuing Penalty (veh)		0				2	0				2	

Intersection: 6: Sidney St & Tracey Park Dr/Tracey St

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	39.0	40.9	98.8	98.6	92.3	95.2
Average Queue (m)	15.1	21.8	46.7	49.4	46.0	48.4
95th Queue (m)	29.8	39.4	76.1	79.5	71.7	72.2
Link Distance (m)	717.4	725.4	416.9	416.9	162.0	162.0
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 9: Sidney St & Loblaw

Movement	WB	WB	NB	NB	SB
Directions Served	L	R	T	TR	LT
Maximum Queue (m)	28.1	22.3	22.5	18.3	28.6
Average Queue (m)	12.7	9.9	0.7	0.6	14.8
95th Queue (m)	24.4	17.1	7.4	6.0	25.6
Link Distance (m)	151.1	151.1	162.0	162.0	173.8
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (m)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Network Summary

	٠	→	•	•	•	•	4	†	~	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ ⊅		44	^	7		4	7	Ť	∱ ∱	
Volume (vph)	164	346	160	488	533	142	142	410	474	63	322	113
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.3	3.3	3.0	3.3	3.0	3.3	3.3	3.0	3.0	3.3	3.3
Total Lost time (s)	4.0	6.0		4.0	6.0	6.0		6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95		0.97	1.00	1.00		1.00	1.00	1.00	0.95	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.99		1.00	0.96	1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		1.00	1.00	0.99	1.00	
Frt	1.00	0.95		1.00	1.00	0.85		1.00	0.85	1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00	1.00		0.99	1.00	0.95	1.00	
Satd. Flow (prot)	1620	3136		3173	1685	1428		1768	1426	1641	3217	
Flt Permitted	0.11	1.00		0.24 798	1.00 1685	1.00		0.61 1095	1.00	0.30	1.00	
Satd. Flow (perm)	195	3136	0.00			1428	0.00		1426	524	3217	0.00
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	178	376	174	530	579	154	154	446	515	68	350 25	123
RTOR Reduction (vph)	170	39 E11	0	0 530	0 579	66 88	0	0	226	0 68		0
Lane Group Flow (vph)	178 1	511	0	530	5/9	88	0	600	289 13	13	448	0
Confl. Peds. (#/hr)	4%	6%	6%	3%	9%	4%	7%	1%	2%	2%	3%	6%
Heavy Vehicles (%)			070									070
Turn Type Protected Phases	pm+pt 7	NA 4		pm+pt	NA 8	Perm	pm+pt	NA 6	Perm	Perm	NA 2	
Permitted Phases	4	4		3	0	8	1	0	6	2	Z	
Actuated Green, G (s)	44.0	35.0		59.0	46.0	46.0	Ü	69.0	69.0	57.0	57.0	
Effective Green, g (s)	44.0	35.0		59.0	46.0	46.0		69.0	69.0	57.0	57.0	
Actuated g/C Ratio	0.31	0.25		0.42	0.33	0.33		0.49	0.49	0.41	0.41	
Clearance Time (s)	4.0	6.0		4.0	6.0	6.0		6.0	6.0	6.0	6.0	
Lane Grp Cap (vph)	152	784		675	553	469		578	702	213	1309	
v/s Ratio Prot	c0.07	0.16		0.11	c0.34	407		c0.06	702	213	0.14	
v/s Ratio Perm	c0.07	0.10		0.11	60.54	0.06		c0.45	0.20	0.13	0.14	
v/c Ratio	1.17	0.65		0.22	1.05	0.00		1.04	0.20	0.13	0.34	
Uniform Delay, d1	41.7	47.0		30.0	47.0	33.6		35.5	22.6	28.3	28.6	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	126.4	4.2		8.9	51.1	0.9		47.7	1.8	3.9	0.7	
Delay (s)	168.1	51.2		38.9	98.1	34.5		83.2	24.4	32.2	29.3	
Level of Service	F	D		D	F	C		F	C	C	C	
Approach Delay (s)	•	79.8			65.5			56.0			29.7	
Approach LOS		E			E			E			С	
Intersection Summary												
HCM 2000 Control Delay			60.1	Н	CM 2000	Level of	Service		E			
HCM 2000 Volume to Capa	icity ratio		1.09									
Actuated Cycle Length (s)			140.0		um of los				20.0			
Intersection Capacity Utiliza	ation		104.1%	IC	CU Level	of Service	е		G			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	*	•	←	•	4	†	/	/	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			4			र्सी के			414	
Volume (vph)	51	22	22	59	37	60	27	838	49	70	735	58
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			8.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		0.99			0.99			1.00			1.00	
Flpb, ped/bikes		0.99			0.99			1.00			1.00	
Frt		0.97			0.95			0.99			0.99	
Flt Protected		0.97			0.98			1.00			1.00	
Satd. Flow (prot)		1702			1646			3413			3335	
Flt Permitted		0.65			0.82			0.57			0.72	
Satd. Flow (perm)		1145			1379			1949			2413	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	55	24	24	64	40	65	29	911	53	76	799	63
RTOR Reduction (vph)	0	8	0	0	16	0	0	3	0	0	3	0
Lane Group Flow (vph)	0	95	0	0	153	0	0	990	0	0	935	0
Confl. Peds. (#/hr)	14		12	12		14	5		13	13		5
Heavy Vehicles (%)	0%	0%	0%	0%	0%	4%	0%	1%	0%	3%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			1			2	
Permitted Phases	8			4			1			2		
Actuated Green, G (s)		24.0			24.0			56.0			45.0	
Effective Green, g (s)		24.0			24.0			56.0			45.0	
Actuated g/C Ratio		0.17			0.17			0.39			0.31	
Clearance Time (s)		6.0			6.0			8.0			6.0	
Lane Grp Cap (vph)		189			228			752			748	
v/s Ratio Prot												
v/s Ratio Perm		0.08			c0.11			c0.51			c0.39	
v/c Ratio		0.51			0.67			1.32			1.25	
Uniform Delay, d1		55.1			56.8			44.5			50.0	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		9.3			14.7			151.7			123.2	
Delay (s)		64.4			71.5			196.2			173.2	
Level of Service		E			E			F			F	
Approach Delay (s)		64.4			71.5			196.2			173.2	
Approach LOS		Е			Е			F			F	
Intersection Summary												
HCM 2000 Control Delay			170.7	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capa	city ratio		1.17									
Actuated Cycle Length (s)			145.0		um of lost				20.0			
Intersection Capacity Utiliza	ition		86.5%	IC	CU Level of	of Service			E			
Analysis Period (min)			15									

c Critical Lane Group

Start Time	6:57
End Time	8:27
Total Time (min)	90
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	3974
Vehs Exited	3934
Starting Vehs	201
Ending Vehs	241
Travel Distance (km)	5062
Travel Time (hr)	284.3
Total Delay (hr)	176.8
Total Stops	6841
Fuel Used (I)	540.9

Interval #0 Information Seeding

Start Time	6:57
End Time	7:27
Total Time (min)	30
Volumes adjusted by Growth Fa	ictors.
No data recorded this interval.	

Start Time	7:27	
End Time	8:27	
Total Time (min)	60	
Volumes adjusted by	Growth Factors.	

Vehs Entered	3974
Vehs Exited	3934
Starting Vehs	201
Ending Vehs	241
Travel Distance (km)	5062
Travel Time (hr)	284.3
Total Delay (hr)	176.8
Total Stops	6841
Fuel Used (I)	540.9

Movement	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB	SB
Directions Served	L	T	TR	L	L	Т	R	LT	R	L	T	TR
Maximum Queue (m)	47.4	129.1	135.5	77.4	464.0	491.1	77.5	178.8	179.1	47.3	60.8	55.9
Average Queue (m)	44.7	78.1	75.7	59.6	317.7	419.5	47.6	126.8	69.9	13.9	35.7	31.8
95th Queue (m)	54.3	129.5	126.1	86.7	483.6	495.7	100.8	211.7	153.9	34.5	54.1	50.4
Link Distance (m)		804.2	804.2		670.0	670.0		166.4	166.4		351.9	351.9
Upstream Blk Time (%)								11	1			
Queuing Penalty (veh)								56	5			
Storage Bay Dist (m)	40.0			70.0			70.0			40.0		
Storage Blk Time (%)	61	7		5	12	61	0				6	
Queuing Penalty (veh)	106	12		12	30	87	0				4	

Intersection: 6: Sidney St & Tracey Park Dr/Tracey St

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	40.9	65.4	127.4	132.2	122.5	134.6
Average Queue (m)	21.7	34.4	86.6	90.0	88.6	96.6
95th Queue (m)	38.0	55.0	118.7	125.0	119.6	133.5
Link Distance (m)	717.4	725.4	416.9	416.9	169.5	169.5
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 9: Sidney St & Loblaw

Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	R	T	TR	LT	T
Maximum Queue (m)	246.8	246.8	127.2	136.3	114.9	115.7
Average Queue (m)	165.5	122.2	22.4	28.1	42.8	21.5
95th Queue (m)	291.0	296.4	85.7	101.0	75.0	67.6
Link Distance (m)	242.2	242.2	169.5	169.5	166.4	166.4
Upstream Blk Time (%)	41	38				
Queuing Penalty (veh)	0	0				
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

	۶	→	•	•	←	4	4	†	~	/	†	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	∱ ∱		44	†	7		र्स	7	Ť	∱ β	
Volume (vph)	82	247	100	353	333	43	118	256	431	70	230	75
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.3	3.3	3.0	3.3	3.0	3.3	3.3	3.0	3.0	3.3	3.3
Total Lost time (s)	4.0	6.0		4.0	6.0	6.0		6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00	0.95		0.97	1.00	1.00		1.00	1.00	1.00	0.95	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.99		1.00	0.98	1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		1.00	1.00	0.99	1.00	
Frt	1.00	0.96		1.00	1.00	0.85		1.00	0.85	1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00	1.00		0.98	1.00	0.95	1.00	
Satd. Flow (prot)	1619	3137		3171	1685	1429		1757	1443	1641	3239	
Flt Permitted	0.39	1.00		0.45	1.00	1.00		0.65	1.00	0.52	1.00	
Satd. Flow (perm)	657	3137		1515	1685	1429		1164	1443	904	3239	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	89	268	109	384	362	47	128	278	468	76	250	82
RTOR Reduction (vph)	0	49	0	0	0	32	0	0	270	0	36	0
Lane Group Flow (vph)	89	328	0	384	362	15	0	406	198	76	296	0
Confl. Peds. (#/hr)	1		2	2		1			10	10		
Heavy Vehicles (%)	4%	6%	6%	3%	9%	4%	7%	1%	2%	2%	3%	6%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	
Protected Phases	7	4		3	8		1	6			2	
Permitted Phases	4			8		8	6		6	2		
Actuated Green, G (s)	34.0	26.0		38.0	28.0	28.0		38.0	38.0	26.0	26.0	
Effective Green, g (s)	34.0	26.0		38.0	28.0	28.0		38.0	38.0	26.0	26.0	
Actuated g/C Ratio	0.38	0.29		0.42	0.31	0.31		0.42	0.42	0.29	0.29	
Clearance Time (s)	4.0	6.0		4.0	6.0	6.0		6.0	6.0	6.0	6.0	
Lane Grp Cap (vph)	333	906		823	524	444		544	609	261	935	
v/s Ratio Prot	0.02	0.10		c0.05	c0.21			c0.07			0.09	
v/s Ratio Perm	0.08			0.15		0.01		c0.25	0.14	0.08		
v/c Ratio	0.27	0.36		0.47	0.69	0.03		0.75	0.32	0.29	0.32	
Uniform Delay, d1	18.8	25.4		17.2	27.2	21.6		21.9	17.4	24.8	25.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	2.0	1.1		1.9	7.3	0.1		9.0	1.4	2.8	0.9	
Delay (s)	20.8	26.5		19.1	34.5	21.7		31.0	18.8	27.7	25.9	
Level of Service	С	С		В	С	С		С	В	С	С	
Approach Delay (s)		25.4			26.3			24.5			26.3	
Approach LOS		С			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			25.5	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.74									
Actuated Cycle Length (s)			90.0		um of los				20.0			
Intersection Capacity Utilizat	tion		86.7%	IC	CU Level	of Service	9		Е			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	•	†	/	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			414			413-	
Volume (vph)	39	16	22	28	10	55	15	722	33	72	531	33
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			8.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		0.99			0.99			1.00			1.00	
Flpb, ped/bikes		0.99			1.00			1.00			1.00	
Frt		0.96			0.92			0.99			0.99	
Flt Protected		0.98			0.99			1.00			0.99	
Satd. Flow (prot)		1696			1577			3395			3330	
Flt Permitted		0.83			0.89			0.65			0.72	
Satd. Flow (perm)		1442			1428			2199			2416	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	42	17	24	30	11	60	16	785	36	78	577	36
RTOR Reduction (vph)	0	12	0	0	44	0	0	3	0	0	4	0
Lane Group Flow (vph)	0	71	0	0	57	0	0	834	0	0	687	0
Confl. Peds. (#/hr)	15		4	4		5			5	5		
Heavy Vehicles (%)	0%	0%	0%	0%	0%	7%	0%	2%	0%	0%	4%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			1			2	
Permitted Phases	8			4			1			2		
Actuated Green, G (s)		24.0			24.0			43.0			33.0	
Effective Green, g (s)		24.0			24.0			43.0			33.0	
Actuated g/C Ratio		0.20			0.20			0.36			0.28	
Clearance Time (s)		6.0			6.0			8.0			6.0	
Lane Grp Cap (vph)		288			285			787			664	
v/s Ratio Prot												
v/s Ratio Perm		c0.05			0.04			c0.38			c0.28	
v/c Ratio		0.25			0.20			1.06			1.04	
Uniform Delay, d1		40.4			40.0			38.5			43.5	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		2.0			1.6			49.3			44.3	
Delay (s)		42.4			41.6			87.8			87.8	
Level of Service		D			D			F			F	
Approach Delay (s)		42.4			41.6			87.8			87.8	
Approach LOS		D			D			F			F	
Intersection Summary												
HCM 2000 Control Delay			82.9	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capa	city ratio		0.86									
Actuated Cycle Length (s)			120.0		um of lost				20.0			
Intersection Capacity Utiliza	ition		76.0%	IC	CU Level of	of Service			D			
Analysis Period (min)			15									

c Critical Lane Group

	٠	→	•	•	←	•	1	†	<i>></i>	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14.54	∱ ⊅		ሻሻ	∱ ∱		ሻ	†	7	Ť	^	7
Volume (vph)	169	407	97	699	694	286	120	364	861	108	289	172
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.3	3.3	3.0	3.3	3.0	3.3	3.3	3.0	3.0	3.3	3.3
Total Lost time (s)	4.0	6.0		4.0	6.0		4.0	6.0	4.0	6.0	6.0	6.0
Lane Util. Factor	0.97	0.95		0.97	0.95		1.00	1.00	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	0.99	1.00	1.00
Frt Elt Droto stad	1.00	0.97		1.00	0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00 3197		0.95	1.00 3089		0.95	1.00 1818	1.00	0.95	1.00 3388	1.00 1447
Satd. Flow (prot) Flt Permitted	3142 0.21	1.00		3173 0.26	1.00		1629 0.47	1.00	1444 1.00	1632 0.46	1.00	1.00
Satd. Flow (perm)	681	3197		853	3089		813	1818	1444	798	3388	1447
	0.92	0.92	0.92	0.92		0.02	0.92	0.92		0.92		0.92
Peak-hour factor, PHF	184	442	105	760	0.92 754	0.92 311	130	396	0.92 936	117	0.92 314	187
Adj. Flow (vph) RTOR Reduction (vph)	0	15	0	700	32	0	0	390	45	0	0	127
Lane Group Flow (vph)	184	532	0	760	1033	0	130	396	891	117	314	60
Confl. Peds. (#/hr)	104	552	U	700	1033	1	3	390	13	13	314	3
Heavy Vehicles (%)	4%	6%	6%	3%	9%	4%	7%	1%	2%	2%	3%	6%
Turn Type	pm+pt	NA	070		NA	470		NA	pm+ov	Perm	NA	Perm
Protected Phases	ріп+рі 7	4		pm+pt 3	8		pm+pt 1	6	3	reiiii	2	reiiii
Permitted Phases	4	4		8	U		6	U	6	2	2	2
Actuated Green, G (s)	45.0	37.0		71.0	59.0		57.0	57.0	87.0	45.0	45.0	45.0
Effective Green, g (s)	45.0	37.0		71.0	59.0		57.0	57.0	87.0	45.0	45.0	45.0
Actuated g/C Ratio	0.32	0.26		0.51	0.42		0.41	0.41	0.62	0.32	0.32	0.32
Clearance Time (s)	4.0	6.0		4.0	6.0		4.0	6.0	4.0	6.0	6.0	6.0
Lane Grp Cap (vph)	359	844		929	1301		377	740	897	256	1089	465
v/s Ratio Prot	0.03	0.17		0.18	0.33		0.02	0.22	c0.21	200	0.09	100
v/s Ratio Perm	0.14	0.17		c0.24	0.00		0.12	0.22	0.40	0.15	0.07	0.04
v/c Ratio	0.51	0.63		0.82	0.79		0.34	0.54	0.99	0.46	0.29	0.13
Uniform Delay, d1	34.6	45.5		24.6	35.2		27.0	31.5	26.2	37.8	35.5	33.6
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	5.2	3.6		7.9	5.1		2.5	2.8	28.5	5.8	0.7	0.6
Delay (s)	39.7	49.0		32.6	40.3		29.5	34.2	54.7	43.6	36.2	34.2
Level of Service	D	D		С	D		С	С	D	D	D	С
Approach Delay (s)		46.7			37.1			46.9			37.0	
Approach LOS		D			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			41.7	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	icity ratio		0.99									
Actuated Cycle Length (s)			140.0		um of lost				20.0			
Intersection Capacity Utiliza	ition		99.0%	IC	CU Level of	of Service	9		F			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	•	•	←	•	•	†	~	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4T)			4T>	
Volume (vph)	49	17	5	59	31	96	18	1066	28	59	942	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			8.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		1.00			0.98			1.00			1.00	
Flpb, ped/bikes		0.99			0.99			1.00			1.00	
Frt		0.99			0.93			1.00			0.99	
Flt Protected		0.97			0.98			1.00			1.00	
Satd. Flow (prot)		1739			1610			3436			3359	
Flt Permitted		0.70			0.88			0.92			0.73	
Satd. Flow (perm)		1261			1431			3149			2456	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	53	18	5	64	34	104	20	1159	30	64	1024	39
RTOR Reduction (vph)	0	2	0	0	32	0	0	2	0	0	2	0
Lane Group Flow (vph)	0	74	0	0	170	0	0	1207	0	0	1125	0
Confl. Peds. (#/hr)	14		12	12		14	5		13	13		5
Heavy Vehicles (%)	0%	0%	0%	0%	0%	4%	0%	1%	0%	3%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			6			2	
Permitted Phases	8			4			6			2		
Actuated Green, G (s)		34.0			34.0			72.0			74.0	
Effective Green, g (s)		34.0			34.0			72.0			74.0	
Actuated g/C Ratio		0.28			0.28			0.60			0.62	
Clearance Time (s)		6.0			6.0			8.0			6.0	
Lane Grp Cap (vph)		357			405			1889			1514	
v/s Ratio Prot												
v/s Ratio Perm		0.06			c0.12			0.38			c0.46	
v/c Ratio		0.21			0.42			0.64			0.74	
Uniform Delay, d1		32.7			35.0			15.6			16.3	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		1.3			3.2			1.7			3.3	
Delay (s)		34.0			38.2			17.2			19.6	
Level of Service		С			D			В			В	
Approach Delay (s)		34.0			38.2			17.2			19.6	
Approach LOS		С			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			20.4	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.65									
Actuated Cycle Length (s)			120.0	Sı	um of lost	time (s)			14.0			
Intersection Capacity Utiliza	ition		96.5%	IC	:U Level d	of Service			F			
Analysis Period (min)			15									

c Critical Lane Group

	•	•	†	/	-	ţ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
ane Configurations	*	7	^ 1>			414			
olume (vph)	195	196	975	203	203	919			
eal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
otal Lost time (s)	4.0	4.0	6.0			6.0			
ane Util. Factor	1.00	1.00	0.95			0.95			
rt	1.00	0.85	0.97			1.00			
Protected	0.95	1.00	1.00			0.99			
itd. Flow (prot)	1711	1531	3333			3391			
Permitted	0.95	1.00	1.00			0.50			
td. Flow (perm)	1711	1531	3333			1711			
ak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92			
j. Flow (vph)	212	213	1060	221	221	999			
TOR Reduction (vph)	0	178	14	0	0	0			
ne Group Flow (vph)	212	35	1267	0	0	1220			
rn Type	Prot	Perm	NA		pm+pt	NA			
tected Phases	8		2		1	6			
mitted Phases		8			6				
uated Green, G (s)	21.0	21.0	71.0			97.0			
ective Green, g (s)	21.0	21.0	71.0			97.0			
uated g/C Ratio	0.16	0.16	0.55			0.76			
earance Time (s)	4.0	4.0	6.0			6.0			
ne Grp Cap (vph)	280	251	1848			1585			
Ratio Prot	c0.12		0.38			c0.13			
Ratio Perm		0.02				c0.45			
Ratio	0.76	0.14	0.69			0.77			
form Delay, d1	51.1	45.8	20.5			9.0			
gression Factor	1.00	1.00	1.00			1.00			
remental Delay, d2	17.3	1.2	2.1			3.7			
lay (s)	68.4	46.9	22.6			12.7			
vel of Service	E	D	С			В			
proach Delay (s)	57.6		22.6			12.7			
oroach LOS	E		С			В			
ersection Summary									
CM 2000 Control Delay			23.5	Н	CM 2000	Level of Service	e	С	
CM 2000 Volume to Cap	acity ratio		0.79						
tuated Cycle Length (s)			128.0		um of lost			14.0	
ersection Capacity Utiliz	zation		88.9%	IC	CU Level c	of Service		Е	
nalysis Period (min)			15						

c Critical Lane Group

Start Time	6:57
End Time	8:27
Total Time (min)	90
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	4928
Vehs Exited	4929
Starting Vehs	236
Ending Vehs	235
Travel Distance (km)	6259
Travel Time (hr)	222.4
Total Delay (hr)	89.1
Total Stops	6580
Fuel Used (I)	555.7

Interval #0 Information Seeding

Start Time	6:57
End Time	7:27
Total Time (min)	30
Volumes adjusted by Growth Fact	ors.
No data recorded this interval	

Start Time	7:27	
End Time	8:27	
Total Time (min)	60	
Volumes adjusted by G	rowth Factors.	

Vehs Entered	4928
Vehs Exited	4929
Starting Vehs	236
Ending Vehs	235
Travel Distance (km)	6259
Travel Time (hr)	222.4
Total Delay (hr)	89.1
Total Stops	6580
Fuel Used (I)	555.7

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	L	T	TR	L	L	T	TR	L	T	R	
Maximum Queue (m)	42.3	44.7	80.3	82.8	79.4	119.7	136.2	162.1	47.4	167.5	163.2	47.4
Average Queue (m)	13.2	18.4	48.2	55.2	59.1	64.8	82.2	96.9	32.5	76.6	77.4	30.9
95th Queue (m)	27.8	31.8	69.4	78.0	77.2	94.4	123.2	137.9	57.2	143.4	147.0	51.5
Link Distance (m)			800.7	800.7			669.8	669.8		166.5	166.5	
Upstream Blk Time (%)										0	0	
Queuing Penalty (veh)										1	0	
Storage Bay Dist (m)	40.0	40.0			70.0	70.0			40.0			40.0
Storage Blk Time (%)	0	0	19		2	4	8		4	29		10
Queuing Penalty (veh)	0	0	32		6	13	56		16	35		14

Intersection: 3: Sidney St & Bell Blvd

Movement	SB	SB	SB
Directions Served	T	Т	R
Maximum Queue (m)	89.6	77.7	47.5
Average Queue (m)	36.2	20.4	15.8
95th Queue (m)	64.0	48.5	30.6
Link Distance (m)	351.9	351.9	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)			40.0
Storage Blk Time (%)	4	0	0
Queuing Penalty (veh)	4	1	0

Intersection: 6: Sidney St & Tracey Park Dr/Tracey St

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	34.9	91.6	209.0	207.0	160.1	158.2
Average Queue (m)	14.8	38.0	67.7	76.8	55.6	58.1
95th Queue (m)	28.2	69.9	137.4	142.9	107.2	104.4
Link Distance (m)	717.4	725.5	423.9	423.9	176.4	176.4
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 9: Sidney St & Loblaw

Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	R	Т	TR	LT	Т
Maximum Queue (m)	79.0	61.1	182.5	181.6	102.4	116.4
Average Queue (m)	46.2	26.6	102.3	120.1	66.8	56.0
95th Queue (m)	72.1	46.1	159.6	174.8	103.2	103.0
Link Distance (m)	240.6	240.6	176.4	176.4	166.5	166.5
Upstream Blk Time (%)			1	1		
Queuing Penalty (veh)			5	7		
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

	٠	→	•	•	←	•	4	†	<i>></i>	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14.14	∱ ⊅		ሻሻ	∱ ∱		ሻ	†	7	ሻ	^	7
Volume (vph)	167	397	169	607	640	256	125	387	579	78	307	125
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.3	3.3	3.0	3.3	3.0	3.3	3.3	3.0	3.0	3.3	3.3
Total Lost time (s)	4.0	6.0		4.0	6.0		4.0	6.0	4.0	6.0	6.0	6.0
Lane Util. Factor	0.97	0.95		0.97	0.95		1.00	1.00	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	0.99	1.00	1.00
Frt	1.00	0.96		1.00	0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3142	3145		3173	3093		1629	1818	1450	1637	3388	1449
Flt Permitted	0.23 762	1.00		0.25 848	1.00		0.42 723	1.00	1.00	0.48	1.00 3388	1.00
Satd. Flow (perm)		3145	0.00		3093	0.00		1818	1450	818		1449
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	182	432	184	660	696 42	278	136	421	629	85	334	136
RTOR Reduction (vph)	102	48	0	0 660	932	0	0 136	0	76 553	0	0	105
Lane Group Flow (vph) Confl. Peds. (#/hr)	182 1	568	0	000	932	0	3	421	13	85 13	334	31
` ,	4%	6%	6%	3%	9%	4%	7%	1%	2%	2%	3%	6%
Heavy Vehicles (%)			070			4 70						
Turn Type Protected Phases	pm+pt 7	NA 4		pm+pt	NA 8		pm+pt 1	NA 6	pm+ov 3	Perm	NA 2	Perm
Permitted Phases	4	4		3 8	0		6	O	6	2	Z	2
Actuated Green, G (s)	38.0	30.0		53.0	41.0		35.0	35.0	54.0	23.0	23.0	23.0
Effective Green, g (s)	38.0	30.0		53.0	41.0		35.0	35.0	54.0	23.0	23.0	23.0
Actuated g/C Ratio	0.38	0.30		0.53	0.41		0.35	0.35	0.54	0.23	0.23	0.23
Clearance Time (s)	4.0	6.0		4.0	6.0		4.0	6.0	4.0	6.0	6.0	6.0
Lane Grp Cap (vph)	479	943		891	1268		325	636	783	188	779	333
v/s Ratio Prot	0.03	0.18		c0.14	0.30		0.03	0.23	c0.13	100	0.10	333
v/s Ratio Perm	0.03	0.10		c0.14	0.30		0.03	0.23	0.25	0.10	0.10	0.02
v/c Ratio	0.38	0.60		0.74	0.73		0.42	0.66	0.71	0.45	0.43	0.02
Uniform Delay, d1	20.7	29.9		15.6	24.9		23.3	27.5	17.1	33.1	32.9	30.3
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	2.3	2.9		5.5	3.8		3.9	5.4	5.3	7.7	1.7	0.6
Delay (s)	22.9	32.8		21.2	28.7		27.2	32.8	22.4	40.7	34.6	30.9
Level of Service	C	C		С	C		C	C	C	D	С	С
Approach Delay (s)		30.5			25.7			26.7			34.6	
Approach LOS		С			С			С			С	
Intersection Summary									_			
HCM 2000 Control Delay			28.1	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.79	_	6.1				00.0			
Actuated Cycle Length (s)			100.0		um of lost				20.0			
Intersection Capacity Utiliza	ition		89.1%	IC	CU Level of	of Service	9		Е			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			414			सीके	
Volume (vph)	55	26	23	71	37	64	37	989	67	92	979	56
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			8.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		0.99			0.99			1.00			1.00	
Flpb, ped/bikes		0.99			0.99			1.00			1.00	
Frt		0.97			0.95			0.99			0.99	
Flt Protected		0.97			0.98			1.00			1.00	
Satd. Flow (prot)		1713			1654			3410			3347	
Flt Permitted		0.74			0.83			0.85			0.66	
Satd. Flow (perm)		1297			1395			2894			2228	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	60	28	25	77	40	70	40	1075	73	100	1064	61
RTOR Reduction (vph)	0	10	0	0	21	0	0	5	0	0	4	0
Lane Group Flow (vph)	0	103	0	0	166	0	0	1183	0	0	1221	0
Confl. Peds. (#/hr)	14		12	12		14	5		13	13		5
Heavy Vehicles (%)	0%	0%	0%	0%	0%	4%	0%	1%	0%	3%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			6			2	
Permitted Phases	8			4			6			2		
Actuated Green, G (s)		24.0			24.0			62.0			64.0	
Effective Green, g (s)		24.0			24.0			62.0			64.0	
Actuated g/C Ratio		0.24			0.24			0.62			0.64	
Clearance Time (s)		6.0			6.0			8.0			6.0	
Lane Grp Cap (vph)		311			334			1794			1425	
v/s Ratio Prot												
v/s Ratio Perm		0.08			c0.12			0.41			c0.55	
v/c Ratio		0.33			0.50			0.66			0.86	
Uniform Delay, d1		31.4			32.8			12.2			14.4	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		2.8			5.2			1.9			6.8	
Delay (s)		34.2			38.0			14.1			21.2	
Level of Service		С			D			В			С	
Approach Delay (s)		34.2			38.0			14.1			21.2	
Approach LOS		С			D			В			С	
Intersection Summary												
HCM 2000 Control Delay			19.8	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	city ratio		0.78									
Actuated Cycle Length (s)			100.0	Sı	um of lost	time (s)			14.0			
Intersection Capacity Utilizat	ion		98.8%	IC	:U Level o	of Service			F			
Analysis Period (min)			15									

c Critical Lane Group

	•	•	†	/	-	ţ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
ane Configurations	*	7	^ 1>			414			
olume (vph)	195	196	975	203	203	919			
eal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
otal Lost time (s)	4.0	4.0	6.0			6.0			
ane Util. Factor	1.00	1.00	0.95			0.95			
rt	1.00	0.85	0.97			1.00			
Protected	0.95	1.00	1.00			0.99			
itd. Flow (prot)	1711	1531	3333			3391			
Permitted	0.95	1.00	1.00			0.50			
td. Flow (perm)	1711	1531	3333			1711			
ak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92			
j. Flow (vph)	212	213	1060	221	221	999			
TOR Reduction (vph)	0	178	14	0	0	0			
ne Group Flow (vph)	212	35	1267	0	0	1220			
rn Type	Prot	Perm	NA		pm+pt	NA			
tected Phases	8		2		1	6			
mitted Phases		8			6				
uated Green, G (s)	21.0	21.0	71.0			97.0			
ective Green, g (s)	21.0	21.0	71.0			97.0			
uated g/C Ratio	0.16	0.16	0.55			0.76			
earance Time (s)	4.0	4.0	6.0			6.0			
ne Grp Cap (vph)	280	251	1848			1585			
Ratio Prot	c0.12		0.38			c0.13			
Ratio Perm		0.02				c0.45			
Ratio	0.76	0.14	0.69			0.77			
form Delay, d1	51.1	45.8	20.5			9.0			
gression Factor	1.00	1.00	1.00			1.00			
remental Delay, d2	17.3	1.2	2.1			3.7			
lay (s)	68.4	46.9	22.6			12.7			
vel of Service	E	D	С			В			
proach Delay (s)	57.6		22.6			12.7			
oroach LOS	E		С			В			
ersection Summary									
CM 2000 Control Delay			23.5	Н	CM 2000	Level of Service	e	С	
CM 2000 Volume to Cap	acity ratio		0.79						
tuated Cycle Length (s)			128.0		um of lost			14.0	
ersection Capacity Utiliz	zation		88.9%	IC	CU Level c	of Service		Е	
nalysis Period (min)			15						

c Critical Lane Group

Summary of All Intervals

Start Time	6:57
End Time	8:27
Total Time (min)	90
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	4692
Vehs Exited	4666
Starting Vehs	189
Ending Vehs	215
Travel Distance (km)	6015
Travel Time (hr)	201.5
Total Delay (hr)	73.8
Total Stops	6295
Fuel Used (I)	525.7

Interval #0 Information Seeding

Start Time	6:57
End Time	7:27
Total Time (min)	30
Volumes adjusted by Growth Fac	ctors.
No data recorded this interval	

Interval #1 Information Recording

Start Time	7:27	
End Time	8:27	
Total Time (min)	60	
Volumes adjusted by Gro	wth Factors.	

Vehs Entered	4692	
Vehs Exited	4666	
Starting Vehs	189	
Ending Vehs	215	
Travel Distance (km)	6015	
Travel Time (hr)	201.5	
Total Delay (hr)	73.8	
Total Stops	6295	
Fuel Used (I)	525.7	

Intersection: 3: Sidney St & Bell Blvd

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	L	T	TR	L	L	T	TR	L	T	R	
Maximum Queue (m)	32.4	27.3	67.4	81.1	53.1	54.8	97.4	104.8	47.4	157.4	130.7	47.4
Average Queue (m)	10.7	15.1	33.6	44.0	31.8	33.9	57.1	66.7	31.0	71.9	54.1	26.1
95th Queue (m)	21.3	23.3	56.3	67.0	49.2	50.4	83.6	94.3	55.9	131.9	113.3	51.1
Link Distance (m)			800.7	800.7			669.8	669.8		166.5	166.5	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (m)	40.0	40.0			70.0	70.0			40.0			40.0
Storage Blk Time (%)			5				2		3	24		15
Queuing Penalty (veh)			8				14		13	30		23

Intersection: 3: Sidney St & Bell Blvd

Movement	SB	SB	SB
Directions Served	T	Т	R
Maximum Queue (m)	101.9	88.4	28.4
Average Queue (m)	44.3	29.0	14.1
95th Queue (m)	76.5	61.4	22.7
Link Distance (m)	351.9	351.9	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)			40.0
Storage Blk Time (%)	7	1	
Queuing Penalty (veh)	5	2	

Intersection: 6: Sidney St & Tracey Park Dr/Tracey St

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	45.8	55.0	218.8	201.2	107.1	108.0
Average Queue (m)	19.6	31.7	75.0	80.3	60.8	62.2
95th Queue (m)	37.1	53.1	154.2	151.8	97.0	95.4
Link Distance (m)	717.4	725.5	423.9	423.9	176.4	176.4
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 9: Sidney St & Loblaw

Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	R	Т	TR	LT	Т
Maximum Queue (m)	67.5	54.2	163.5	169.6	92.9	121.9
Average Queue (m)	41.6	25.1	75.1	86.5	58.5	56.4
95th Queue (m)	63.2	43.1	137.6	147.3	88.4	96.2
Link Distance (m)	240.6	240.6	176.4	176.4	166.5	166.5
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

Network wide Queuing Penalty: 95

	٠	→	•	•	←	•	1	†	<i>></i>	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14.54	∱ ⊅		ሻሻ	∱ ⊅		ሻ	†	7	ሻ	^	7
Volume (vph)	169	407	97	496	694	286	120	364	704	108	289	172
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.3	3.3	3.0	3.3	3.0	3.3	3.3	3.0	3.0	3.3	3.3
Total Lost time (s)	4.0	6.0		4.0	6.0		4.0	6.0	4.0	6.0	6.0	6.0
Lane Util. Factor	0.97	0.95		0.97	0.95		1.00	1.00	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	0.99	1.00	1.00
Frt Elt Droto stad	1.00	0.97		1.00	0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected Satd. Flow (prot)	0.95 3142	1.00 3197		0.95 3173	1.00 3089		0.95 1629	1.00 1818	1.00 1444	0.95 1632	1.00 3388	1.00 1447
Flt Permitted	0.21	1.00		0.26	1.00		0.47	1.00	1.00	0.46	1.00	1.00
Satd. Flow (perm)	681	3197		853	3089		813	1818	1444	798	3388	1447
, ,	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Peak-hour factor, PHF	184	442	105	539	754	311	130	396	765	117	314	187
Adj. Flow (vph) RTOR Reduction (vph)	0	15	0	0	32	0	0	390	45	0	0	127
Lane Group Flow (vph)	184	532	0	539	1033	0	130	396	720	117	314	60
Confl. Peds. (#/hr)	104	332	U	557	1033	1	3	370	13	13	314	3
Heavy Vehicles (%)	4%	6%	6%	3%	9%	4%	7%	1%	2%	2%	3%	6%
Turn Type	pm+pt	NA	070	pm+pt	NA	770	pm+pt	NA	pm+ov	Perm	NA	Perm
Protected Phases	ριτι + ρι 7	4		ριτι + ρι	8		ριτι + ρι 1	6	3	r Cilli	2	FCIIII
Permitted Phases	4			8	U		6	U	6	2	2	2
Actuated Green, G (s)	45.0	37.0		71.0	59.0		57.0	57.0	87.0	45.0	45.0	45.0
Effective Green, g (s)	45.0	37.0		71.0	59.0		57.0	57.0	87.0	45.0	45.0	45.0
Actuated g/C Ratio	0.32	0.26		0.51	0.42		0.41	0.41	0.62	0.32	0.32	0.32
Clearance Time (s)	4.0	6.0		4.0	6.0		4.0	6.0	4.0	6.0	6.0	6.0
Lane Grp Cap (vph)	359	844		929	1301		377	740	897	256	1089	465
v/s Ratio Prot	0.03	0.17		0.12	c0.33		0.02	0.22	c0.17		0.09	
v/s Ratio Perm	0.14			0.17			0.12		0.33	0.15		0.04
v/c Ratio	0.51	0.63		0.58	0.79		0.34	0.54	0.80	0.46	0.29	0.13
Uniform Delay, d1	34.6	45.5		22.2	35.2		27.0	31.5	20.0	37.8	35.5	33.6
Progression Factor	1.00	1.00		1.00	1.00		0.97	0.92	0.75	1.00	1.00	1.00
Incremental Delay, d2	5.2	3.6		2.6	5.1		2.3	2.6	7.0	5.8	0.7	0.6
Delay (s)	39.7	49.0		24.9	40.3		28.4	31.4	22.0	43.6	36.2	34.2
Level of Service	D	D		С	D		С	С	С	D	D	С
Approach Delay (s)		46.7			35.1			25.5			37.0	
Approach LOS		D			D			С			D	
Intersection Summary												
HCM 2000 Control Delay			34.4	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	icity ratio		0.84		<u> </u>	()						
Actuated Cycle Length (s)			140.0		um of lost				20.0			
Intersection Capacity Utiliza	ition		89.3%	IC	CU Level of	of Service	9		Е			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			€ 1Ъ			4î>	
Volume (vph)	49	17	5	59	31	96	18	1066	28	59	903	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			8.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		1.00			0.98			1.00			1.00	
Flpb, ped/bikes		0.99			0.99			1.00			1.00	
Frt		0.99			0.93			1.00			0.99	
Flt Protected		0.97			0.98			1.00			1.00	
Satd. Flow (prot)		1739			1610			3436			3358	
Flt Permitted		0.70			0.88			0.92			0.73	
Satd. Flow (perm)		1261			1431			3155			2443	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	53	18	5	64	34	104	20	1159	30	64	982	39
RTOR Reduction (vph)	0	2	0	0	32	0	0	2	0	0	2	0
Lane Group Flow (vph)	0	74	0	0	170	0	0	1207	0	0	1083	0
Confl. Peds. (#/hr)	14		12	12		14	5		13	13		5
Heavy Vehicles (%)	0%	0%	0%	0%	0%	4%	0%	1%	0%	3%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			6			2	
Permitted Phases	8			4			6			2		
Actuated Green, G (s)		34.0			34.0			72.0			74.0	
Effective Green, g (s)		34.0			34.0			72.0			74.0	
Actuated g/C Ratio		0.28			0.28			0.60			0.62	
Clearance Time (s)		6.0			6.0			8.0			6.0	
Lane Grp Cap (vph)		357			405			1893			1506	
v/s Ratio Prot												
v/s Ratio Perm		0.06			c0.12			0.38			c0.44	
v/c Ratio		0.21			0.42			0.64			0.72	
Uniform Delay, d1		32.7			35.0			15.6			15.8	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		1.3			3.2			1.7			3.0	
Delay (s)		34.0			38.2			17.2			18.8	
Level of Service		С			D			B			В	
Approach Delay (s)		34.0			38.2			17.2			18.8	
Approach LOS		С			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			20.0	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.64									
Actuated Cycle Length (s)			120.0		um of lost				14.0			
Intersection Capacity Utilization	on		95.4%	IC	CU Level of	of Service			F			
Analysis Period (min)			15									

c Critical Lane Group

	•	•	†	/	\	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	¥	7	ħβ			44		
Volume (vph)	156	39	975	203	0	919		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.0	4.0	6.0			6.0		
Lane Util. Factor	1.00	1.00	0.95			0.95		
Frt	1.00	0.85	0.97			1.00		
Flt Protected	0.95	1.00	1.00			1.00		
Satd. Flow (prot)	1711	1531	3333			3421		
Flt Permitted	0.95	1.00	1.00			1.00		
Satd. Flow (perm)	1711	1531	3333			3421		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	170	42	1060	221	0	999		
RTOR Reduction (vph)	0	37	13	0	0	0		
Lane Group Flow (vph)	170	5	1268	0	0	999		
Turn Type	Prot	Perm	NA			NA		
Protected Phases	8		2		1	6		
Permitted Phases		8			6			
Actuated Green, G (s)	16.0	16.0	106.0			114.0		
Effective Green, g (s)	16.0	16.0	106.0			114.0		
Actuated g/C Ratio	0.11	0.11	0.76			0.81		
Clearance Time (s)	4.0	4.0	6.0			6.0		
Lane Grp Cap (vph)	195	174	2523			2785		
v/s Ratio Prot	c0.10		c0.38			c0.29		
v/s Ratio Perm		0.00						
v/c Ratio	0.87	0.03	0.50			0.36		
Uniform Delay, d1	61.0	55.1	6.7			3.4		
Progression Factor	1.00	1.00	1.00			0.98		
Incremental Delay, d2	37.9	0.3	0.7			0.3		
Delay (s)	98.9	55.4	7.4			3.7		
Level of Service	F	Е	Α			Α		
Approach Delay (s)	90.3		7.4			3.7		
Approach LOS	F		А			А		
Intersection Summary								
HCM 2000 Control Delay			12.9	H(CM 2000	Level of Service	се	
HCM 2000 Volume to Capaci	ty ratio		0.55					
Actuated Cycle Length (s)	_		140.0	Sı	um of lost	time (s)		
Intersection Capacity Utilizati	on		50.4%		U Level c			
Analysis Period (min)			15					

c Critical Lane Group

Summary of All Intervals

Start Time	6:57
End Time	8:27
Total Time (min)	90
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	4504
Vehs Exited	4496
Starting Vehs	158
Ending Vehs	166
Travel Distance (km)	5795
Travel Time (hr)	184.7
Total Delay (hr)	62.1
Total Stops	4649
Fuel Used (I)	492.3

Interval #0 Information Seeding

Start Time	6:57
End Time	7:27
Total Time (min)	30
Volumes adjusted by Growth Fac	tors.
No data recorded this interval	

Interval #1 Information Recording

		<u> </u>		
Start Time	7:27			
End Time	8:27			
Total Time (min)	60			
Volumes adjusted by Gro	wth Factors.			

Vehs Entered	4504	
Vehs Exited	4496	
Starting Vehs	158	
Ending Vehs	166	
Travel Distance (km)	5795	
Travel Time (hr)	184.7	
Total Delay (hr)	62.1	
Total Stops	4649	
Fuel Used (I)	492.3	

Intersection: 3: Sidney St & Bell Blvd

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	L	T	TR	L	L	T	TR	L	T	R	L
Maximum Queue (m)	32.5	79.9	93.1	96.6	59.5	119.8	123.1	139.7	47.4	102.8	97.3	47.4
Average Queue (m)	10.4	18.8	45.5	54.8	36.1	44.0	78.8	91.2	31.9	66.1	59.3	24.3
95th Queue (m)	21.6	41.4	70.6	79.5	55.1	75.4	113.9	125.2	57.4	98.6	94.6	45.6
Link Distance (m)			800.7	800.7			669.8	669.8		166.5	166.5	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (m)	40.0	40.0			70.0	70.0			40.0			40.0
Storage Blk Time (%)		0	17			0	8		2	27		10
Queuing Penalty (veh)		0	28			0	39		8	32		14

Intersection: 3: Sidney St & Bell Blvd

Movement	SB	SB	SB
Directions Served	T	T	R
Maximum Queue (m)	77.5	75.3	29.7
Average Queue (m)	35.0	22.4	16.5
95th Queue (m)	58.6	47.9	27.1
Link Distance (m)	351.9	351.9	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)			40.0
Storage Blk Time (%)	3	0	
Queuing Penalty (veh)	3	1	

Intersection: 6: Sidney St & Tracey Park Dr/Tracey St

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	34.9	67.6	92.4	96.1	98.1	97.8
Average Queue (m)	18.6	35.8	50.0	60.9	49.7	52.0
95th Queue (m)	31.3	57.4	77.6	90.4	86.0	89.8
Link Distance (m)	717.4	725.5	423.9	423.9	176.4	176.4
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 9: Sidney St & Loblaw

Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	R	T	TR	LT	T
Maximum Queue (m)	59.6	33.6	85.6	144.3	39.1	40.6
Average Queue (m)	37.2	10.0	29.6	66.3	15.2	15.8
95th Queue (m)	57.9	20.9	67.4	131.9	31.5	32.4
Link Distance (m)	240.6	240.6	176.4	176.4	166.5	166.5
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

Network wide Queuing Penalty: 125

	۶	→	•	•	←	•	1	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14.54	∱ ⊅		ሻሻ	∱ ∱		7	†	7	ሻ	^	7
Volume (vph)	169	407	97	496	694	286	120	364	704	108	289	172
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.3	3.3	3.0	3.3	3.0	3.3	3.3	3.0	3.0	3.3	3.3
Total Lost time (s)	4.0	6.0		4.0	6.0		4.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	0.97	0.95		0.97	0.95		1.00	1.00	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	0.96	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	0.99	1.00	1.00
Frt	1.00	0.97		1.00	0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3142	3197 1.00		3173	3089		1629	1818 1.00	1426	1632	3388	1447
Flt Permitted Satd. Flow (perm)	0.21 681	3197		0.26 853	1.00 3089		0.47 813	1818	1.00 1426	0.46 798	1.00 3388	1.00 1447
			0.00			0.02						
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	184	442 15	105	539	754 32	311	130	396 0	765 308	117	314 0	187 127
RTOR Reduction (vph) Lane Group Flow (vph)	0 184	532	0	0 539	1033	0	0 130	396	308 457	0 117	314	60
Confl. Peds. (#/hr)	104	332	U	339	1033	0	3	390	13	13	314	3
Heavy Vehicles (%)	4%	6%	6%	3%	9%	4%	7%	1%	2%	2%	3%	6%
		NA	070		NA	4 70		NA	Perm		NA	Perm
Turn Type Protected Phases	pm+pt 7	1NA 4		pm+pt 3	NA 8		pm+pt 1	6	Pellii	Perm	2	Pellii
Permitted Phases	4	4		8	0		6	U	6	2		2
Actuated Green, G (s)	45.0	37.0		71.0	59.0		57.0	57.0	57.0	45.0	45.0	45.0
Effective Green, g (s)	45.0	37.0		71.0	59.0		57.0	57.0	57.0	45.0	45.0	45.0
Actuated g/C Ratio	0.32	0.26		0.51	0.42		0.41	0.41	0.41	0.32	0.32	0.32
Clearance Time (s)	4.0	6.0		4.0	6.0		4.0	6.0	6.0	6.0	6.0	6.0
Lane Grp Cap (vph)	359	844		929	1301		377	740	580	256	1089	465
v/s Ratio Prot	0.03	0.17		c0.12	c0.33		0.02	0.22	300	230	0.09	703
v/s Ratio Perm	0.03	0.17		0.17	60.55		0.02	0.22	c0.32	0.15	0.07	0.04
v/c Ratio	0.51	0.63		0.58	0.79		0.34	0.54	0.79	0.46	0.29	0.13
Uniform Delay, d1	34.6	45.5		22.2	35.2		27.0	31.5	36.2	37.8	35.5	33.6
Progression Factor	1.00	1.00		1.00	1.00		0.97	0.92	1.02	1.00	1.00	1.00
Incremental Delay, d2	5.2	3.6		2.6	5.1		2.3	2.6	9.6	5.8	0.7	0.6
Delay (s)	39.7	49.0		24.9	40.3		28.4	31.4	46.5	43.6	36.2	34.2
Level of Service	D	D		C	D		С	С	D	D	D	C
Approach Delay (s)		46.7			35.1			40.0			37.0	
Approach LOS		D			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			38.9	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.81									
Actuated Cycle Length (s)			140.0		um of lost				20.0			
Intersection Capacity Utiliza	ition		90.9%	IC	CU Level of	of Service	9		Е			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	1	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			€1 }			€ 1}	
Volume (vph)	49	17	5	59	31	96	18	1066	28	59	903	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			8.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		1.00			0.98			1.00			1.00	
Flpb, ped/bikes		0.99			0.99			1.00			1.00	
Frt		0.99			0.93			1.00			0.99	
Flt Protected		0.97			0.98			1.00			1.00	
Satd. Flow (prot)		1739			1610			3436			3358	
Flt Permitted		0.70			0.88			0.92			0.73	
Satd. Flow (perm)		1261			1431			3155			2443	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	53	18	5	64	34	104	20	1159	30	64	982	39
RTOR Reduction (vph)	0	2	0	0	32	0	0	2	0	0	2	0
Lane Group Flow (vph)	0	74	0	0	170	0	0	1207	0	0	1083	0
Confl. Peds. (#/hr)	14		12	12		14	5		13	13		5
Heavy Vehicles (%)	0%	0%	0%	0%	0%	4%	0%	1%	0%	3%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			6			2	
Permitted Phases	8			4			6			2		
Actuated Green, G (s)		34.0			34.0			72.0			74.0	
Effective Green, g (s)		34.0			34.0			72.0			74.0	
Actuated g/C Ratio		0.28			0.28			0.60			0.62	
Clearance Time (s)		6.0			6.0			8.0			6.0	
Lane Grp Cap (vph)		357			405			1893			1506	
v/s Ratio Prot												
v/s Ratio Perm		0.06			c0.12			0.38			c0.44	
v/c Ratio		0.21			0.42			0.64			0.72	
Uniform Delay, d1		32.7			35.0			15.6			15.8	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		1.3			3.2			1.7			3.0	
Delay (s)		34.0			38.2			17.2			18.8	
Level of Service		С			D			В			В	
Approach Delay (s)		34.0			38.2			17.2			18.8	
Approach LOS		С			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			20.0	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.64									
Actuated Cycle Length (s)			120.0		um of lost				14.0			
Intersection Capacity Utiliza	ition		95.4%	IC	U Level o	of Service			F			
Analysis Period (min)			15									

c Critical Lane Group

Cane Configurations		•	•	†	~	>	↓		
Cane Configurations	Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Volume (vph) 156 39 975 203 0 919 deal Flow (vphp) 1900 1900 1900 1900 1900 1900 Total Lost time (s) 4.0 4.0 6.0 6.0	Lane Configurations	*	7	∱ 1≽			41∱		
deal Flow (vphpl) 1900 6.0 2.0 2.0 2.0 0.95	Volume (vph)	156	39		203	0			
Lane Util. Factor 1.00 1.00 0.95 0.95 Fit 1.00 0.85 0.97 1.00 Fit Protected 0.95 1.00 1.00 1.00 Sald. Flow (prot) 1711 1531 3333 3421 Fit Permitted 0.95 1.00 1.00 1.00 Sald. Flow (perm) 1711 1531 3333 3421 Fit Permitted 0.95 1.00 1.00 1.00 Sald. Flow (perm) 1711 1531 3333 3421 Feak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (yph) 170 42 1060 221 0 999 ARTOR Reduction (vph) 0 37 13 0 0 0 Lane Group Flow (vph) 170 5 1268 0 0 999 Furn Type Prot Perm NA NA Protected Phases 8 2 1 6 Permitted Phases 8 6 Actuated Green, G (s) 16.0 16.0 106.0 114.0 Effective Green, g (s) 16.0 16.0 106.0 114.0 Ceffective Green, g (s) 16.0 16.0 106.0 114.0 Ceffective Green, g (s) 4.0 4.0 6.0 6.0 Lane Group Flow (vph) 195 174 2523 2785 V/s Ratio Prot 0.00 V/c Ratio 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Delay (s) 98.9 7.4 3.7 Delay (s) 98.9 7.4 3.7 Delay (s) 98.9 7.4 3.7 Delay (s) 90.3 7.4 3.7 Delay (s) 90.3 7.4 3.7 Delay (c) 90.3 7.4 3.7 Del	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Fit Protected	Total Lost time (s)	4.0	4.0	6.0			6.0		
Fit Protected 0.95 1.00 1.00 1.00 Sald. Flow (prot) 1711 1531 3333 3421 Fit Permitted 0.95 1.00 1.00 1.00 Sald. Flow (perm) 1711 1531 3333 3421 Fit Permitted 0.95 1.00 1.00 1.00 Sald. Flow (perm) 1711 1531 3333 3421 Fit Permitted 0.95 1.00 1.00 1.00 Sald. Flow (perm) 1711 1531 3333 3421 Fit Permitted 0.95 1.00 1.00 1.00 Sald. Flow (perm) 170 42 1060 221 0 999 Sald. Flow (vph) 170 42 1060 221 0 999 Sald. Flow (vph) 170 5 1268 0 0 999 Sald. Flow (vph) 170 5 12	Lane Util. Factor	1.00	1.00	0.95			0.95		
Satd. Flow (prot) 1711 1531 3333 3421 Fit Permitted 0.95 1.00 1.00 1.00 Satd. Flow (perm) 1711 1531 3333 3421 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.94 Adj. Flow (vph) 170 42 1060 221 0 999 ATOR Reduction (vph) 0 37 13 0 0 0 0 Lane Group Flow (vph) 170 5 1268 0 0 999 Furn Type Prot Perm NA NA Protected Phases 8 2 1 6 Permitted Phases 8 6 Actuated Green, G (s) 16.0 16.0 106.0 114.0 Effective Green, g (s) 16.0 16.0 106.0 114.0 Effective Green, g (s) 16.0 16.0 106.0 114.0 Effective Green, g (s) 16.0 16.0 106.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 If's Ratio Prot 0.10 0.38 0.29 If's Ratio Perm 0.00 If's Ratio Perm 0.00 If's Ratio Perm 0.00 If's Ratio Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Approach LOS F A A A Approach LOS F A A Analysis Period (min) 15 If A0 Analysis Period (min) 15 If A0 ICU Level of Service A Analysis Period (min) 15 If A10 ISSA 150 ICU Level of Service A Analysis Period (min) 15 ISSA 150 ICU Level of Service A Analysis Period (min) 15	Frt	1.00	0.85	0.97			1.00		
Fit Permitted	Flt Protected	0.95	1.00	1.00			1.00		
Satd. Flow (perm) 1711 1531 3333 3421 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 170 42 1060 221 0 999 RTOR Reduction (vph) 0 37 13 0 0 0 Lane Group Flow (vph) 170 5 1268 0 0 999 Turn Type Prot Perm NA NA Protected Phases 8 2 1 6 Permitted Phases 8 2 1 6 Permitted Phases 8 6 Actuated Green, G (s) 16.0 16.0 106.0 114.0 Actuated g/C Ratio 0.11 0.11 0.76 0.81 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 Israel Ratio Prot c0.10 c0.38 c0.29 Israel Ratio Perm 0.00 Israel Ratio Perm 0.00 Israel Ratio Perm 0.00 0.98 Progression Factor 1.00 1.00 1.00 0.98 Progression Factor 1.00 1.00 0.30 Progression Factor 1.00 1.00 0.98	Satd. Flow (prot)	1711	1531	3333			3421		
Peak-hour factor, PHF 0.92 0.99 0.02 0.02 0.02 0.02 0.02 0.02 0.03	Flt Permitted	0.95	1.00	1.00			1.00		
Adj. Flow (vph) 170 42 1060 221 0 999 RTOR Reduction (vph) 0 37 13 0 0 0 0 _ane Group Flow (vph) 170 5 1268 0 0 999 Turn Type Prot Perm NA NA Protected Phases 8 2 1 6 Actuated Green, G (s) 16.0 16.0 106.0 114.0 Actuated g/C Ratio 0.11 0.11 0.76 0.81 Clearance Time (s) 4.0 4.0 6.0 6.0 _ane Grp Cap (vph) 195 174 2523 2785 _//s Ratio Prot Co.10 c0.38 c0.29 _//s Ratio Port Co.10 5.5 1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 ncremental Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 ncremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Approach Delay (s) 90.3 7.4 3.7 Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A A Analysis Period (min) 15 Actuated Cycle Length (s) 14.0 Sum of lost time (s) 14.0 ICU Level of Service A Analysis Period (min) 15	Satd. Flow (perm)	1711	1531	3333			3421		
RTOR Reduction (vph) 0 37 13 0 0 0 0 Lane Group Flow (vph) 170 5 1268 0 0 999 Turn Type Prot Perm NA NA Protected Phases 8 2 1 6 Permitted Phases 8 6 Actuated Green, G (s) 16.0 16.0 106.0 114.0 Effective Green, g (s) 16.0 16.0 106.0 114.0 Actuated g/C Ratio 0.11 0.11 0.76 0.81 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 I/s Ratio Prot c0.10 c0.38 c0.29 I/s Ratio Perm I/c Ratio 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A A Approach LOS F A A Analysis Period (min) 15 Actualed Cycle Length (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Lane Group Flow (vph) 170 5 1268 0 0 999 Turn Type	Adj. Flow (vph)	170	42	1060	221	0	999		
Furn Type	RTOR Reduction (vph)	0	37	13	0	0	0		
Protected Phases 8 2 1 6 Permitted Phases 8 6 Actuated Green, G (s) 16.0 16.0 106.0 114.0 Effective Green, g (s) 16.0 16.0 106.0 114.0 Actuated g/C Ratio 0.11 0.11 0.76 0.81 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 L/S Ratio Prot c0.10 c0.38 c0.29 L/S Ratio Port c0.10 c0.38 c0.29 L/S Ratio Port co.10 0.00 L/C Ratio 0.87 0.03 0.50 0.36 L/Difform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A A Intersection Summary HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Lane Group Flow (vph)	170	5	1268	0	0	999		
Protected Phases 8 2 1 6 Permitted Phases 8 6 Actuated Green, G (s) 16.0 16.0 106.0 114.0 Effective Green, g (s) 16.0 16.0 106.0 114.0 Actuated g/C Ratio 0.11 0.11 0.76 0.81 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 L/s Ratio Prot c0.10 c0.38 c0.29 L/s Ratio Porm L/c Ratio 0 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 ncremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A A Intersection Summary HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 14.0 Sum of lost time (s) 14.0 Itcl Level of Service A Analysis Period (min) 15	Turn Type	Prot	Perm	NA	_		NA		
Actuated Green, G (s) 16.0 16.0 106.0 114.0 Effective Green, g (s) 16.0 16.0 106.0 114.0 Actuated g/C Ratio 0.11 0.11 0.76 0.81 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 I/s Ratio Prot c0.10 c0.38 c0.29 I/s Ratio Perm 0.00 I/c Ratio 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A Intersection Summary HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Protected Phases	8		2		1	6		
Effective Green, g (s) 16.0 16.0 106.0 114.0 Actuated g/C Ratio 0.11 0.11 0.76 0.81 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 \[\begin{align*} \text{J's Ratio Prot} & \text{Co.10} & \text{Co.38} & \text{Co.29} \[\begin{align*} \text{J's Ratio Perm} & \text{O.00} & \text{O.36} & \text{J's Ratio Perm} & \text{O.00} & \text{J's Ratio Perm} & \text{O.00} & \text{O.36} & \text{J's Ratio Perm} & \text{O.00} & \text{O.36} & \text{O.36} & \text{J's Progression Factor} & \text{I.00} & \text{1.00} & \text{1.00} & \text{1.00} & \text{0.36} & \text{J's Progression Factor} & \text{1.00} & \text{1.00} & \text{1.00} & \text{0.98} & \text{ncremental Delay, d2} & \text{37.9} & \text{0.3} & \text{0.7} & \text{0.3} & \text{Delay (s)} & \text{98.9} & \text{55.4} & \text{7.4} & \text{3.7} & \text{Level of Service} & \text{F} & \text{Effective} & \text{A A Approach Delay (s)} & \text{90.3} & \text{7.4} & \text{3.7} & \text{Approach LOS} & \text{F} & \text{A A A A A APproach LOS} & \text{F} & \text{A A A A APproach LOS} & \text{F} & \text{A A A A APproach Control Delay} & \text{12.9} & \text{HCM 2000 Level of Service} & \text{B} & \text{ACtuated Cycle Length (s)} & \text{14.0} & \text{Sum of lost time (s)} & \text{14.0} & \text{ntersection Capacity Utilization} & \text{50.4%} & \text{ICU Level of Service} & \text{A Analysis Period (min)} & \text{15} & \text{15}	Permitted Phases		8			6			
Actuated g/C Ratio 0.11 0.11 0.76 0.81 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 //s Ratio Prot c0.10 c0.38 c0.29 //s Ratio Perm 0.00 //c Ratio Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 ncremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A Neresection Summary HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Icu Level of Service A Analysis Period (min) 15	Actuated Green, G (s)	16.0	16.0	106.0			114.0		
Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 I/s Ratio Prot c0.10 c0.38 c0.29 I/s Ratio Perm 0.00 I/c Ratio 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 A Approach LOS F A A A HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Analysis Period (min) 15	Effective Green, g (s)	16.0	16.0	106.0			114.0		
Lane Grp Cap (vph) 195 174 2523 2785 I/s Ratio Prot c0.10 c0.38 c0.29 I/s Ratio Perm 0.00 0.00 I/c Ratio 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach LOS F A A A Approach LOS F A A A HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Actuated g/C Ratio	0.11	0.11	0.76			0.81		
x/s Ratio Prot c0.10 c0.38 c0.29 x/s Ratio Perm 0.00 0.00 x/c Ratio 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 ncremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A A HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 A A A Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Analysis Period (min) 15	Clearance Time (s)	4.0	4.0	6.0			6.0		
A/s Ratio Perm 0.00 A/c Ratio 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 ncremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A Netersection Summary 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Analysis Period (min) 15	Lane Grp Cap (vph)	195	174	2523			2785		
A/C Ratio 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A Intersection Summary A A HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Analysis Period (min) 15	v/s Ratio Prot	c0.10		c0.38			c0.29		
Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A Intersection Summary A A A HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 A Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	v/s Ratio Perm		0.00						
Progression Factor 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A Intersection Summary A A HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	v/c Ratio	0.87	0.03						
Delay (s) 98.9 55.4 7.4 3.7 3.7 Level of Service F E A A A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A A Intersection Summary	Uniform Delay, d1	61.0	55.1				3.4		
Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A Intersection Summary A A HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Analysis Period (min) 15	Progression Factor		1.00						
Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A Intersection Summary HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Incremental Delay, d2								
Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A A Intersection Summary HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Delay (s)								
Approach LOS F A A Intersection Summary HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Level of Service		Е						
ntersection Summary HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 ntersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Approach Delay (s)								
HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 ntersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Approach LOS	F		Α			А		
HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Intersection Summary								
HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	HCM 2000 Control Delay			12.9	Н	CM 2000	Level of Service	,	В
Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 ntersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15		acity ratio							
ntersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Actuated Cycle Length (s)				Sı	um of lost	time (s)	1	4.0
Analysis Period (min) 15	3 0 1 7	ation							
Critical Lane Group	Analysis Period (min)			15					
	c Critical Lane Group								

Summary of All Intervals

Start Time	6:57
End Time	8:27
Total Time (min)	90
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	4617
Vehs Exited	4623
Starting Vehs	193
Ending Vehs	187
Travel Distance (km)	5970
Travel Time (hr)	192.5
Total Delay (hr)	66.6
Total Stops	4865
Fuel Used (I)	507.2

Interval #0 Information Seeding

Start Time	6:57
End Time	7:27
Total Time (min)	30
Volumes adjusted by Growth Fac	tors.
No data recorded this interval	

Interval #1 Information Recording

		_	
Start Time	7:27		
End Time	8:27		
Total Time (min)	60		
Volumes adjusted by Gro	wth Factors.		

Vehs Entered	4617
Vehs Exited	4623
Starting Vehs	193
Ending Vehs	187
Travel Distance (km)	5970
Travel Time (hr)	192.5
Total Delay (hr)	66.6
Total Stops	4865
Fuel Used (I)	507.2

Intersection: 3: Sidney St & Bell Blvd

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	L	T	TR	L	L	T	TR	L	T	R	L
Maximum Queue (m)	27.2	76.5	87.5	88.6	57.7	103.4	132.0	134.1	47.4	117.3	143.4	47.4
Average Queue (m)	15.3	22.7	50.2	59.7	35.6	43.0	79.5	88.6	26.6	67.6	49.0	26.0
95th Queue (m)	25.0	42.9	75.4	83.8	53.6	68.8	112.4	120.3	52.3	107.8	109.9	51.4
Link Distance (m)			800.7	800.7			669.8	669.8		166.5	166.5	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (m)	40.0	40.0			70.0	70.0			40.0			40.0
Storage Blk Time (%)			18				11			24		4
Queuing Penalty (veh)			30				55			29		6

Intersection: 3: Sidney St & Bell Blvd

Movement	SB	SB	SB
Directions Served	T	T	R
Maximum Queue (m)	62.5	66.6	47.4
Average Queue (m)	33.0	24.1	14.0
95th Queue (m)	52.2	45.8	27.4
Link Distance (m)	351.9	351.9	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)			40.0
Storage Blk Time (%)	4	1	0
Queuing Penalty (veh)	4	2	0

Intersection: 6: Sidney St & Tracey Park Dr/Tracey St

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	36.3	90.7	191.2	187.9	85.4	102.6
Average Queue (m)	15.1	36.8	63.0	72.0	49.6	53.4
95th Queue (m)	28.5	71.8	118.2	119.8	80.2	84.9
Link Distance (m)	717.4	725.5	423.9	423.9	176.4	176.4
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 9: Sidney St & Loblaw

Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	R	Ţ	TR	LT	T
Maximum Queue (m)	80.7	27.9	140.9	142.3	26.2	36.8
Average Queue (m)	47.2	9.1	39.1	61.7	12.9	15.8
95th Queue (m)	76.4	21.2	106.6	132.2	23.7	28.2
Link Distance (m)	240.6	240.6	176.4	176.4	166.5	166.5
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

Network wide Queuing Penalty: 127

	٠	→	•	•	←	•	1	†	<i>></i>	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14.54	∱ ⊅		ሻሻ	∱ ⊅		ሻ	†	7	ሻ	^	7
Volume (vph)	169	407	97	496	694	286	120	364	704	108	289	172
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.3	3.3	3.0	3.3	3.0	3.3	3.3	3.0	3.0	3.3	3.3
Total Lost time (s)	4.0	6.0		4.0	6.0		4.0	6.0	4.0	6.0	6.0	6.0
Lane Util. Factor	0.97	0.95		0.97	0.95		1.00	1.00	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	0.99	1.00	1.00
Frt Elt Droto stad	1.00	0.97		1.00	0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected Satd. Flow (prot)	0.95 3142	1.00 3197		0.95 3173	1.00 3089		0.95 1629	1.00 1818	1.00 1444	0.95 1632	1.00 3388	1.00 1447
Flt Permitted	0.21	1.00		0.26	1.00		0.47	1.00	1.00	0.46	1.00	1.00
Satd. Flow (perm)	681	3197		853	3089		813	1818	1444	798	3388	1447
, ,	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Peak-hour factor, PHF	184	442	105	539	754	311	130	396	765	117	314	187
Adj. Flow (vph) RTOR Reduction (vph)	0	15	0	0	32	0	0	390	45	0	0	127
Lane Group Flow (vph)	184	532	0	539	1033	0	130	396	720	117	314	60
Confl. Peds. (#/hr)	104	332	U	557	1033	1	3	370	13	13	314	3
Heavy Vehicles (%)	4%	6%	6%	3%	9%	4%	7%	1%	2%	2%	3%	6%
Turn Type	pm+pt	NA	070	pm+pt	NA	770	pm+pt	NA	pm+ov	Perm	NA	Perm
Protected Phases	ριτι + ρι 7	4		ριτι + ρι	8		ριτι + ρι 1	6	3	r Cilli	2	FCIIII
Permitted Phases	4			8	U		6	U	6	2	2	2
Actuated Green, G (s)	45.0	37.0		71.0	59.0		57.0	57.0	87.0	45.0	45.0	45.0
Effective Green, g (s)	45.0	37.0		71.0	59.0		57.0	57.0	87.0	45.0	45.0	45.0
Actuated g/C Ratio	0.32	0.26		0.51	0.42		0.41	0.41	0.62	0.32	0.32	0.32
Clearance Time (s)	4.0	6.0		4.0	6.0		4.0	6.0	4.0	6.0	6.0	6.0
Lane Grp Cap (vph)	359	844		929	1301		377	740	897	256	1089	465
v/s Ratio Prot	0.03	0.17		0.12	c0.33		0.02	0.22	c0.17		0.09	
v/s Ratio Perm	0.14			0.17			0.12		0.33	0.15		0.04
v/c Ratio	0.51	0.63		0.58	0.79		0.34	0.54	0.80	0.46	0.29	0.13
Uniform Delay, d1	34.6	45.5		22.2	35.2		27.0	31.5	20.0	37.8	35.5	33.6
Progression Factor	1.00	1.00		1.00	1.00		0.97	0.92	0.75	1.00	1.00	1.00
Incremental Delay, d2	5.2	3.6		2.6	5.1		2.3	2.6	7.0	5.8	0.7	0.6
Delay (s)	39.7	49.0		24.9	40.3		28.4	31.4	22.0	43.6	36.2	34.2
Level of Service	D	D		С	D		С	С	С	D	D	С
Approach Delay (s)		46.7			35.1			25.5			37.0	
Approach LOS		D			D			С			D	
Intersection Summary												
HCM 2000 Control Delay			34.4	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	icity ratio		0.84		<u> </u>	()						
Actuated Cycle Length (s)			140.0		um of lost				20.0			
Intersection Capacity Utiliza	ition		89.3%	IC	CU Level of	of Service	9		Е			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			€ 1Ъ			4î>	
Volume (vph)	49	17	5	59	31	96	18	1066	28	59	903	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			8.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		1.00			0.98			1.00			1.00	
Flpb, ped/bikes		0.99			0.99			1.00			1.00	
Frt		0.99			0.93			1.00			0.99	
Flt Protected		0.97			0.98			1.00			1.00	
Satd. Flow (prot)		1739			1610			3436			3358	
Flt Permitted		0.70			0.88			0.92			0.73	
Satd. Flow (perm)		1261			1431			3155			2443	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	53	18	5	64	34	104	20	1159	30	64	982	39
RTOR Reduction (vph)	0	2	0	0	32	0	0	2	0	0	2	0
Lane Group Flow (vph)	0	74	0	0	170	0	0	1207	0	0	1083	0
Confl. Peds. (#/hr)	14		12	12		14	5		13	13		5
Heavy Vehicles (%)	0%	0%	0%	0%	0%	4%	0%	1%	0%	3%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			6			2	
Permitted Phases	8			4			6			2		
Actuated Green, G (s)		34.0			34.0			72.0			74.0	
Effective Green, g (s)		34.0			34.0			72.0			74.0	
Actuated g/C Ratio		0.28			0.28			0.60			0.62	
Clearance Time (s)		6.0			6.0			8.0			6.0	
Lane Grp Cap (vph)		357			405			1893			1506	
v/s Ratio Prot												
v/s Ratio Perm		0.06			c0.12			0.38			c0.44	
v/c Ratio		0.21			0.42			0.64			0.72	
Uniform Delay, d1		32.7			35.0			15.6			15.8	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		1.3			3.2			1.7			3.0	
Delay (s)		34.0			38.2			17.2			18.8	
Level of Service		С			D			B			В	
Approach Delay (s)		34.0			38.2			17.2			18.8	
Approach LOS		С			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			20.0	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.64									
Actuated Cycle Length (s)			120.0		um of lost				14.0			
Intersection Capacity Utilization	on		95.4%	IC	CU Level of	of Service			F			
Analysis Period (min)			15									

c Critical Lane Group

Movement WBL WBR NBT NBR SBL SBT Lane Configurations 1
Volume (vph) 156 39 975 203 0 919 Ideal Flow (vphpl) 1900 1900 1900 1900 1900
Volume (vph) 156 39 975 203 0 919 Ideal Flow (vphpl) 1900 1900 1900 1900 1900
Ideal Flow (vphpl) 1900 1900 1900 1900 1900
, , , ,
Total Lost time (s) 4.0 4.0 6.0 6.0
Lane Util. Factor 1.00 1.00 0.95 0.95
Frt 1.00 0.85 0.97 1.00
Flt Protected 0.95 1.00 1.00 1.00
Satd. Flow (prot) 1711 1531 3333 3421
Flt Permitted 0.95 1.00 1.00 1.00
Satd. Flow (perm) 1711 1531 3333 3421
Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92
Adj. Flow (vph) 170 42 1060 221 0 999
RTOR Reduction (vph) 0 37 13 0 0 0
Lane Group Flow (vph) 170 5 1268 0 0 999
Turn Type Prot Perm NA NA
Protected Phases 8 2 1 6
Permitted Phases 8 6
Actuated Green, G (s) 16.0 16.0 106.0 114.0
Effective Green, g (s) 16.0 16.0 106.0 114.0
Actuated g/C Ratio 0.11 0.11 0.76 0.81
Clearance Time (s) 4.0 4.0 6.0 6.0
Lane Grp Cap (vph) 195 174 2523 2785
v/s Ratio Prot c0.10 c0.38 c0.29
v/s Ratio Perm 0.00
v/c Ratio 0.87 0.03 0.50 0.36
Uniform Delay, d1 61.0 55.1 6.7 3.4
Progression Factor 1.00 1.00 1.00 0.98
Incremental Delay, d2 37.9 0.3 0.7 0.3
Delay (s) 98.9 55.4 7.4 3.7
Level of Service F E A A
Approach Delay (s) 90.3 7.4 3.7
Approach LOS F A A
Intersection Summary
HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B
HCM 2000 Volume to Capacity ratio 0.55
Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0
Intersection Capacity Utilization 50.4% ICU Level of Service A
Analysis Period (min) 15

c Critical Lane Group

Summary of All Intervals

Start Time	6:57
End Time	8:27
Total Time (min)	90
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	4504
Vehs Exited	4496
Starting Vehs	158
Ending Vehs	166
Travel Distance (km)	5795
Travel Time (hr)	184.7
Total Delay (hr)	62.1
Total Stops	4649
Fuel Used (I)	492.3

Interval #0 Information Seeding

Start Time	6:57
End Time	7:27
Total Time (min)	30
Volumes adjusted by Growth Fac	ctors.
No data recorded this interval	

Interval #1 Information Recording

Start Time	7:27	
End Time	8:27	
Total Time (min)	60	
Volumes adjusted by Grov	wth Factors.	

Vehs Entered	4504	
Vehs Exited	4496	
Starting Vehs	158	
Ending Vehs	166	
Travel Distance (km)	5795	
Travel Time (hr)	184.7	
Total Delay (hr)	62.1	
Total Stops	4649	
Fuel Used (I)	492.3	

Intersection: 3: Sidney St & Bell Blvd

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	L	T	TR	L	L	T	TR	L	T	R	L
Maximum Queue (m)	32.5							97.3	47.4			
Average Queue (m)	10.4	18.8 45.5 54.8 36.1 44.0 78.8 91.2 31.9 66.1 59.3					59.3	24.3				
95th Queue (m)	21.6	41.4	70.6	79.5	55.1	75.4	113.9	125.2	57.4	98.6	94.6	45.6
Link Distance (m)			800.7	800.7			669.8	669.8		166.5	166.5	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (m)	40.0	40.0			70.0	70.0			40.0			40.0
Storage Blk Time (%)		0	17			0	8		2	27		10
Queuing Penalty (veh)		0	28			0	39		8	32		14

Intersection: 3: Sidney St & Bell Blvd

Movement	SB	SB	SB
Directions Served	T	T	R
Maximum Queue (m)	77.5	75.3	29.7
Average Queue (m)	35.0	22.4	16.5
95th Queue (m)	58.6	47.9	27.1
Link Distance (m)	351.9	351.9	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)			40.0
Storage Blk Time (%)	3	0	
Queuing Penalty (veh)	3	1	

Intersection: 6: Sidney St & Tracey Park Dr/Tracey St

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	34.9	67.6	92.4	96.1	98.1	97.8
Average Queue (m)	18.6	35.8	50.0	60.9	49.7	52.0
95th Queue (m)	31.3	57.4	77.6	90.4	86.0	89.8
Link Distance (m)	717.4	725.5	423.9	423.9	176.4	176.4
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 9: Sidney St & Loblaw

Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	R	T	TR	LT	T
Maximum Queue (m)	59.6	33.6	85.6	144.3	39.1	40.6
Average Queue (m)	37.2	10.0	29.6	66.3	15.2	15.8
95th Queue (m)	57.9	20.9	67.4	131.9	31.5	32.4
Link Distance (m)	240.6	240.6	176.4	176.4	166.5	166.5
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

Network wide Queuing Penalty: 125

	۶	→	•	•	←	•	1	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14.54	∱ ⊅		ሻሻ	∱ ∱		7	†	7	ሻ	^	7
Volume (vph)	169	407	97	496	694	286	120	364	704	108	289	172
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.3	3.3	3.0	3.3	3.0	3.3	3.3	3.0	3.0	3.3	3.3
Total Lost time (s)	4.0	6.0		4.0	6.0		4.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	0.97	0.95		0.97	0.95		1.00	1.00	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	0.96	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	0.99	1.00	1.00
Frt	1.00	0.97		1.00	0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3142	3197 1.00		3173	3089		1629	1818 1.00	1426	1632	3388	1447
Flt Permitted Satd. Flow (perm)	0.21 681	3197		0.26 853	1.00 3089		0.47 813	1818	1.00 1426	0.46 798	1.00 3388	1.00 1447
			0.00			0.02						
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	184	442 15	105	539	754 32	311	130	396 0	765 308	117	314 0	187 127
RTOR Reduction (vph) Lane Group Flow (vph)	0 184	532	0	0 539	1033	0	0 130	396	308 457	0 117	314	60
Confl. Peds. (#/hr)	104	332	U	339	1033	0	3	390	13	13	314	3
Heavy Vehicles (%)	4%	6%	6%	3%	9%	4%	7%	1%	2%	2%	3%	6%
		NA	070		NA	4 70		NA	Perm		NA	Perm
Turn Type Protected Phases	pm+pt 7	1NA 4		pm+pt 3	NA 8		pm+pt 1	6	Pellii	Perm	2	Pellii
Permitted Phases	4	4		8	0		6	U	6	2		2
Actuated Green, G (s)	45.0	37.0		71.0	59.0		57.0	57.0	57.0	45.0	45.0	45.0
Effective Green, g (s)	45.0	37.0		71.0	59.0		57.0	57.0	57.0	45.0	45.0	45.0
Actuated g/C Ratio	0.32	0.26		0.51	0.42		0.41	0.41	0.41	0.32	0.32	0.32
Clearance Time (s)	4.0	6.0		4.0	6.0		4.0	6.0	6.0	6.0	6.0	6.0
Lane Grp Cap (vph)	359	844		929	1301		377	740	580	256	1089	465
v/s Ratio Prot	0.03	0.17		c0.12	c0.33		0.02	0.22	300	230	0.09	703
v/s Ratio Perm	0.03	0.17		0.17	60.55		0.02	0.22	c0.32	0.15	0.07	0.04
v/c Ratio	0.51	0.63		0.58	0.79		0.34	0.54	0.79	0.46	0.29	0.13
Uniform Delay, d1	34.6	45.5		22.2	35.2		27.0	31.5	36.2	37.8	35.5	33.6
Progression Factor	1.00	1.00		1.00	1.00		0.97	0.92	1.02	1.00	1.00	1.00
Incremental Delay, d2	5.2	3.6		2.6	5.1		2.3	2.6	9.6	5.8	0.7	0.6
Delay (s)	39.7	49.0		24.9	40.3		28.4	31.4	46.5	43.6	36.2	34.2
Level of Service	D	D		C	D		С	С	D	D	D	C
Approach Delay (s)		46.7			35.1			40.0			37.0	
Approach LOS		D			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			38.9	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.81									
Actuated Cycle Length (s)			140.0		um of lost				20.0			
Intersection Capacity Utiliza	ition		90.9%	IC	CU Level of	of Service	9		Е			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	1	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			€1 }			€ 1}	
Volume (vph)	49	17	5	59	31	96	18	1066	28	59	903	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			8.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		1.00			0.98			1.00			1.00	
Flpb, ped/bikes		0.99			0.99			1.00			1.00	
Frt		0.99			0.93			1.00			0.99	
Flt Protected		0.97			0.98			1.00			1.00	
Satd. Flow (prot)		1739			1610			3436			3358	
Flt Permitted		0.70			0.88			0.92			0.73	
Satd. Flow (perm)		1261			1431			3155			2443	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	53	18	5	64	34	104	20	1159	30	64	982	39
RTOR Reduction (vph)	0	2	0	0	32	0	0	2	0	0	2	0
Lane Group Flow (vph)	0	74	0	0	170	0	0	1207	0	0	1083	0
Confl. Peds. (#/hr)	14		12	12		14	5		13	13		5
Heavy Vehicles (%)	0%	0%	0%	0%	0%	4%	0%	1%	0%	3%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			6			2	
Permitted Phases	8			4			6			2		
Actuated Green, G (s)		34.0			34.0			72.0			74.0	
Effective Green, g (s)		34.0			34.0			72.0			74.0	
Actuated g/C Ratio		0.28			0.28			0.60			0.62	
Clearance Time (s)		6.0			6.0			8.0			6.0	
Lane Grp Cap (vph)		357			405			1893			1506	
v/s Ratio Prot												
v/s Ratio Perm		0.06			c0.12			0.38			c0.44	
v/c Ratio		0.21			0.42			0.64			0.72	
Uniform Delay, d1		32.7			35.0			15.6			15.8	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		1.3			3.2			1.7			3.0	
Delay (s)		34.0			38.2			17.2			18.8	
Level of Service		С			D			В			В	
Approach Delay (s)		34.0			38.2			17.2			18.8	
Approach LOS		С			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			20.0	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.64									
Actuated Cycle Length (s)			120.0		um of lost				14.0			
Intersection Capacity Utiliza	ition		95.4%	IC	U Level o	of Service			F			
Analysis Period (min)			15									

c Critical Lane Group

Cane Configurations		•	•	†	~	>	↓		
Cane Configurations	Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Volume (vph) 156 39 975 203 0 919 deal Flow (vphp) 1900 1900 1900 1900 1900 1900 Total Lost time (s) 4.0 4.0 6.0 6.0	Lane Configurations	*	7	∱ 1≽			41∱		
deal Flow (vphpl) 1900 6.0 2.0 2.0 2.0 0.95	Volume (vph)	156	39		203	0			
Lane Util. Factor 1.00 1.00 0.95 0.95 Fit 1.00 0.85 0.97 1.00 Fit Protected 0.95 1.00 1.00 1.00 Sald. Flow (prot) 1711 1531 3333 3421 Fit Permitted 0.95 1.00 1.00 1.00 Sald. Flow (perm) 1711 1531 3333 3421 Fit Permitted 0.95 1.00 1.00 1.00 Sald. Flow (perm) 1711 1531 3333 3421 Feak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (yph) 170 42 1060 221 0 999 ARTOR Reduction (vph) 0 37 13 0 0 0 Lane Group Flow (vph) 170 5 1268 0 0 999 Furn Type Prot Perm NA NA Protected Phases 8 2 1 6 Permitted Phases 8 6 Actuated Green, G (s) 16.0 16.0 106.0 114.0 Effective Green, g (s) 16.0 16.0 106.0 114.0 Ceffective Green, g (s) 16.0 16.0 106.0 114.0 Ceffective Green, g (s) 4.0 4.0 6.0 6.0 Lane Group Flow (vph) 195 174 2523 2785 V/s Ratio Prot 0.00 V/c Ratio 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Delay (s) 98.9 7.4 3.7 Delay (s) 98.9 7.4 3.7 Delay (s) 98.9 7.4 3.7 Delay (s) 90.3 7.4 3.7 Delay (s) 90.3 7.4 3.7 Delay (c) 90.3 7.4 3.7 Del	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Fit Protected	Total Lost time (s)	4.0	4.0	6.0			6.0		
Fit Protected 0.95 1.00 1.00 1.00 Sald. Flow (prot) 1711 1531 3333 3421 Fit Permitted 0.95 1.00 1.00 1.00 Sald. Flow (perm) 1711 1531 3333 3421 Fit Permitted 0.95 1.00 1.00 1.00 Sald. Flow (perm) 1711 1531 3333 3421 Fit Permitted 0.95 1.00 1.00 1.00 Sald. Flow (perm) 1711 1531 3333 3421 Fit Permitted 0.95 1.00 1.00 1.00 Sald. Flow (perm) 170 42 1060 221 0 999 Sald. Flow (vph) 170 42 1060 221 0 999 Sald. Flow (vph) 170 5 1268 0 0 999 Sald. Flow (vph) 170 5 12	Lane Util. Factor	1.00	1.00	0.95			0.95		
Satd. Flow (prot) 1711 1531 3333 3421 Fit Permitted 0.95 1.00 1.00 1.00 Satd. Flow (perm) 1711 1531 3333 3421 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.94 Adj. Flow (vph) 170 42 1060 221 0 999 ATOR Reduction (vph) 0 37 13 0 0 0 0 Lane Group Flow (vph) 170 5 1268 0 0 999 Furn Type Prot Perm NA NA Protected Phases 8 2 1 6 Permitted Phases 8 6 Actuated Green, G (s) 16.0 16.0 106.0 114.0 Effective Green, g (s) 16.0 16.0 106.0 114.0 Effective Green, g (s) 16.0 16.0 106.0 114.0 Effective Green, g (s) 16.0 16.0 106.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 If's Ratio Prot 0.10 0.38 0.29 If's Ratio Perm 0.00 If's Ratio Perm 0.00 If's Ratio Perm 0.00 If's Ratio Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Approach LOS F A A A Approach LOS F A A Analysis Period (min) 15 If A0 Analysis Period (min) 15 If A0 ICU Level of Service A Analysis Period (min) 15 If A10 ISSA 150 ICU Level of Service A Analysis Period (min) 15 ISSA 150 ICU Level of Service A Analysis Period (min) 15	Frt	1.00	0.85	0.97			1.00		
Fit Permitted	Flt Protected	0.95	1.00	1.00			1.00		
Satd. Flow (perm) 1711 1531 3333 3421 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 170 42 1060 221 0 999 RTOR Reduction (vph) 0 37 13 0 0 0 Lane Group Flow (vph) 170 5 1268 0 0 999 Turn Type Prot Perm NA NA Protected Phases 8 2 1 6 Permitted Phases 8 2 1 6 Permitted Phases 8 6 Actuated Green, G (s) 16.0 16.0 106.0 114.0 Actuated g/C Ratio 0.11 0.11 0.76 0.81 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 Israel Ratio Prot c0.10 c0.38 c0.29 Israel Ratio Perm 0.00 Israel Ratio Perm 0.00 Israel Ratio Perm 0.00 0.98 Progression Factor 1.00 1.00 1.00 0.98 Progression Factor 1.00 1.00 0.30 Progression Factor 1.00 1.00 0.98	Satd. Flow (prot)	1711	1531	3333			3421		
Peak-hour factor, PHF 0.92 0.99 0.02 0.02 0.02 0.02 0.02 0.02 0.03	Flt Permitted	0.95	1.00	1.00			1.00		
Adj. Flow (vph) 170 42 1060 221 0 999 RTOR Reduction (vph) 0 37 13 0 0 0 0 _ane Group Flow (vph) 170 5 1268 0 0 999 Turn Type Prot Perm NA NA Protected Phases 8 2 1 6 Actuated Green, G (s) 16.0 16.0 106.0 114.0 Actuated g/C Ratio 0.11 0.11 0.76 0.81 Clearance Time (s) 4.0 4.0 6.0 6.0 _ane Grp Cap (vph) 195 174 2523 2785 _//s Ratio Prot Co.10 c0.38 c0.29 _//s Ratio Port Co.10 5.5 1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 ncremental Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 ncremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Approach Delay (s) 90.3 7.4 3.7 Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A A Analysis Period (min) 15 Actuated Cycle Length (s) 14.0 Sum of lost time (s) 14.0 ICU Level of Service A Analysis Period (min) 15	Satd. Flow (perm)	1711	1531	3333			3421		
RTOR Reduction (vph) 0 37 13 0 0 0 0 Lane Group Flow (vph) 170 5 1268 0 0 999 Turn Type Prot Perm NA NA Protected Phases 8 2 1 6 Permitted Phases 8 6 Actuated Green, G (s) 16.0 16.0 106.0 114.0 Effective Green, g (s) 16.0 16.0 106.0 114.0 Actuated g/C Ratio 0.11 0.11 0.76 0.81 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 I/s Ratio Prot c0.10 c0.38 c0.29 I/s Ratio Perm I/c Ratio 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A A Approach LOS F A A Analysis Period (min) 15 Actualed Cycle Length (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Lane Group Flow (vph) 170 5 1268 0 0 999 Turn Type	Adj. Flow (vph)	170	42	1060	221	0	999		
Furn Type	RTOR Reduction (vph)	0	37	13	0	0	0		
Protected Phases 8 2 1 6 Permitted Phases 8 6 Actuated Green, G (s) 16.0 16.0 106.0 114.0 Effective Green, g (s) 16.0 16.0 106.0 114.0 Actuated g/C Ratio 0.11 0.11 0.76 0.81 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 L/S Ratio Prot c0.10 c0.38 c0.29 L/S Ratio Port c0.10 c0.38 c0.29 L/S Ratio Port co.10 0.00 L/C Ratio 0.87 0.03 0.50 0.36 L/Difform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A A Intersection Summary HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Lane Group Flow (vph)	170	5	1268	0	0	999		
Protected Phases 8 2 1 6 Permitted Phases 8 6 Actuated Green, G (s) 16.0 16.0 106.0 114.0 Effective Green, g (s) 16.0 16.0 106.0 114.0 Actuated g/C Ratio 0.11 0.11 0.76 0.81 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 L/s Ratio Prot c0.10 c0.38 c0.29 L/s Ratio Porm L/c Ratio 0 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 ncremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A A Intersection Summary HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 14.0 Sum of lost time (s) 14.0 Itcl Level of Service A Analysis Period (min) 15	Turn Type	Prot	Perm	NA	_		NA		
Actuated Green, G (s) 16.0 16.0 106.0 114.0 Effective Green, g (s) 16.0 16.0 106.0 114.0 Actuated g/C Ratio 0.11 0.11 0.76 0.81 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 I/s Ratio Prot c0.10 c0.38 c0.29 I/s Ratio Perm 0.00 I/c Ratio 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A Intersection Summary HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Protected Phases	8		2		1	6		
Effective Green, g (s) 16.0 16.0 106.0 114.0 Actuated g/C Ratio 0.11 0.11 0.76 0.81 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 \[\begin{align*} \text{J's Ratio Prot} & \text{Co.10} & \text{Co.38} & \text{Co.29} \[\begin{align*} \text{J's Ratio Perm} & \text{O.00} & \text{O.36} & \text{J's Ratio Perm} & \text{O.00} & \text{J's Ratio Perm} & \text{O.00} & \text{O.36} & \text{J's Ratio Perm} & \text{O.00} & \text{O.36} & \text{O.36} & \text{J's Progression Factor} & \text{I.00} & \text{1.00} & \text{1.00} & \text{1.00} & \text{0.36} & \text{J's Progression Factor} & \text{1.00} & \text{1.00} & \text{1.00} & \text{0.98} & \text{ncremental Delay, d2} & \text{37.9} & \text{0.3} & \text{0.7} & \text{0.3} & \text{Delay (s)} & \text{98.9} & \text{55.4} & \text{7.4} & \text{3.7} & \text{Level of Service} & \text{F} & \text{Effective} & \text{A A Approach Delay (s)} & \text{90.3} & \text{7.4} & \text{3.7} & \text{Approach LOS} & \text{F} & \text{A A A A A APproach LOS} & \text{F} & \text{A A A A APproach LOS} & \text{F} & \text{A A A A APproach Control Delay} & \text{12.9} & \text{HCM 2000 Level of Service} & \text{B} & \text{ACtuated Cycle Length (s)} & \text{14.0} & \text{Sum of lost time (s)} & \text{14.0} & \text{ntersection Capacity Utilization} & \text{50.4%} & \text{ICU Level of Service} & \text{A Analysis Period (min)} & \text{15} & \text{15}	Permitted Phases		8			6			
Actuated g/C Ratio 0.11 0.11 0.76 0.81 Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 //s Ratio Prot c0.10 c0.38 c0.29 //s Ratio Perm 0.00 //c Ratio Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 ncremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A Neresection Summary HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Icu Level of Service A Analysis Period (min) 15	Actuated Green, G (s)	16.0	16.0	106.0			114.0		
Clearance Time (s) 4.0 4.0 6.0 6.0 Lane Grp Cap (vph) 195 174 2523 2785 I/s Ratio Prot c0.10 c0.38 c0.29 I/s Ratio Perm 0.00 I/c Ratio 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 A Approach LOS F A A A HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Analysis Period (min) 15	Effective Green, g (s)	16.0	16.0	106.0			114.0		
Lane Grp Cap (vph) 195 174 2523 2785 I/s Ratio Prot c0.10 c0.38 c0.29 I/s Ratio Perm 0.00 0.00 I/c Ratio 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach LOS F A A A Approach LOS F A A A HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Actuated g/C Ratio	0.11	0.11	0.76			0.81		
x/s Ratio Prot c0.10 c0.38 c0.29 x/s Ratio Perm 0.00 0.00 x/c Ratio 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 ncremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A A HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 A A A Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Analysis Period (min) 15	Clearance Time (s)	4.0	4.0	6.0			6.0		
A/s Ratio Perm 0.00 A/c Ratio 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 ncremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A Netersection Summary 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Analysis Period (min) 15	Lane Grp Cap (vph)	195	174	2523			2785		
A/C Ratio 0.87 0.03 0.50 0.36 Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A Intersection Summary A A HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Analysis Period (min) 15	v/s Ratio Prot	c0.10		c0.38			c0.29		
Uniform Delay, d1 61.0 55.1 6.7 3.4 Progression Factor 1.00 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A Intersection Summary A A A HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 A Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	v/s Ratio Perm		0.00						
Progression Factor 1.00 1.00 0.98 Incremental Delay, d2 37.9 0.3 0.7 0.3 Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A Intersection Summary A A HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	v/c Ratio	0.87	0.03						
Delay (s) 98.9 55.4 7.4 3.7 3.7 Level of Service F E A A A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A A Intersection Summary	Uniform Delay, d1	61.0	55.1				3.4		
Delay (s) 98.9 55.4 7.4 3.7 Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A Intersection Summary A A HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Analysis Period (min) 15	Progression Factor		1.00						
Level of Service F E A A Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A Intersection Summary HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Incremental Delay, d2								
Approach Delay (s) 90.3 7.4 3.7 Approach LOS F A A A Intersection Summary HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Delay (s)								
Approach LOS F A A Intersection Summary HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Level of Service		Е						
ntersection Summary HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 ntersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Approach Delay (s)								
HCM 2000 Control Delay 12.9 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 ntersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Approach LOS	F		Α			А		
HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Intersection Summary								
HCM 2000 Volume to Capacity ratio 0.55 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	HCM 2000 Control Delay			12.9	Н	CM 2000	Level of Service	,	В
Actuated Cycle Length (s) 140.0 Sum of lost time (s) 14.0 ntersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15		acity ratio							
ntersection Capacity Utilization 50.4% ICU Level of Service A Analysis Period (min) 15	Actuated Cycle Length (s)				Sı	um of lost	time (s)	1	4.0
Analysis Period (min) 15	3 0 1 7	ation							
Critical Lane Group	Analysis Period (min)			15					
	c Critical Lane Group								

Summary of All Intervals

Start Time	6:57
End Time	8:27
Total Time (min)	90
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	4617
Vehs Exited	4623
Starting Vehs	193
Ending Vehs	187
Travel Distance (km)	5970
Travel Time (hr)	192.5
Total Delay (hr)	66.6
Total Stops	4865
Fuel Used (I)	507.2

Interval #0 Information Seeding

Start Time	6:57
End Time	7:27
Total Time (min)	30
Volumes adjusted by Growth Fac	tors.
No data recorded this interval	

Interval #1 Information Recording

		_	
Start Time	7:27		
End Time	8:27		
Total Time (min)	60		
Volumes adjusted by Gro	wth Factors.		

Vehs Entered	4617
Vehs Exited	4623
Starting Vehs	193
Ending Vehs	187
Travel Distance (km)	5970
Travel Time (hr)	192.5
Total Delay (hr)	66.6
Total Stops	4865
Fuel Used (I)	507.2

Intersection: 3: Sidney St & Bell Blvd

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB
Directions Served	L	L	T	TR	L	L	T	TR	L	T	R	L
Maximum Queue (m)	27.2	76.5	87.5	88.6	57.7	103.4	132.0	134.1	47.4	117.3	143.4	47.4
Average Queue (m)	15.3	22.7	50.2	59.7	35.6	43.0	79.5	88.6	26.6	67.6	49.0	26.0
95th Queue (m)	25.0	42.9	75.4	83.8	53.6	68.8	112.4	120.3	52.3	107.8	109.9	51.4
Link Distance (m)			800.7	800.7			669.8	669.8		166.5	166.5	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (m)	40.0	40.0			70.0	70.0			40.0			40.0
Storage Blk Time (%)			18				11			24		4
Queuing Penalty (veh)			30				55			29		6

Intersection: 3: Sidney St & Bell Blvd

Movement	SB	SB	SB
Directions Served	T	T	R
Maximum Queue (m)	62.5	66.6	47.4
Average Queue (m)	33.0	24.1	14.0
95th Queue (m)	52.2	45.8	27.4
Link Distance (m)	351.9	351.9	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)			40.0
Storage Blk Time (%)	4	1	0
Queuing Penalty (veh)	4	2	0

Intersection: 6: Sidney St & Tracey Park Dr/Tracey St

Movement	EB	WB	NB	NB	SB	SB
Directions Served	LTR	LTR	LT	TR	LT	TR
Maximum Queue (m)	36.3	90.7	191.2	187.9	85.4	102.6
Average Queue (m)	15.1	36.8	63.0	72.0	49.6	53.4
95th Queue (m)	28.5	71.8	118.2	119.8	80.2	84.9
Link Distance (m)	717.4	725.5	423.9	423.9	176.4	176.4
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 9: Sidney St & Loblaw

Movement	WB	WB	NB	NB	SB	SB
Directions Served	L	R	Ţ	TR	LT	T
Maximum Queue (m)	80.7	27.9	140.9	142.3	26.2	36.8
Average Queue (m)	47.2	9.1	39.1	61.7	12.9	15.8
95th Queue (m)	76.4	21.2	106.6	132.2	23.7	28.2
Link Distance (m)	240.6	240.6	176.4	176.4	166.5	166.5
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

Network wide Queuing Penalty: 127

Appendix C: 2031 Calculated Volumes

AM Peak Volumes

2011 Intersect	2011 Intersection Daily Volumes (EMME Model)					
Approach	Entering	Exiting				
;	Sidney St & Bell Blvo	ł				
N	5,900	4,400				
S	10,500	7,600				
E	5,600	8,400				
W	5,300	7,000				
;	Sidney St & Tracey S	t				
N	7,600	10,500				
S	10,500	7,600				
E	N/A	N/A				
W	N/A	N/A				

2031 Intersect	2031 Intersection Daily Volumes (EMME Model)					
Approach	Entering	Exiting				
	Sidney St & Bell Blvo	d				
N	7,300	6,100				
S	13,400	9,100				
E	9,300	9,800				
W	6,600	11,700				
;	Sidney St & Tracey S	t				
N	9,100	13,400				
S	12,900	9,100				
E	500	N/A				
W	N/A	N/A				

Growth Factors (EMME Model)							
Approach	Entering	Exiting					
	Sidney St & Bell Blvo	t					
N	1.237	1.386					
S	1.276	1.197					
E	1.661	1.167					
W	1.245	1.671					
9	Sidney St & Tracey St						
N	1.197	1.276					
S	1.229	1.197					
E	N/A	N/A					
W	N/A	N/A					

2011 Intersection AM Peak Hour Volumes (EMME)						
Approach	Entering	Exiting				
9	Sidney St & Bell Blvo	I				
N	354	264				
S	630	456				
E	336	504				
W	318	420				
9	Sidney St & Tracey S	t				
N	456	630				
S	630	456				
E	N/A	N/A				
W	N/A	N/A				
* AM Peak Hour = 6% of	* AM Peak Hour = 6% of Daily Traffic					

2031 Intersection AM Peak Hour Volumes (EMME)					
Approach	Entering	Exiting			
	Sidney St & Bell Blvd	l			
N	438	366			
S	804	546			
E	558	588			
W	396	702			
9	Sidney St & Tracey S	t			
N	546	804			
S	774	546			
E	30	N/A			
W	N/A	N/A			
* AM Peak Hour = 6% of	Daily Traffic				

Annual Growth Rates (EMME Model)											
Approach	Entering	Exiting									
Sidney St & Bell Blvd											
N 1.07% 1.65%											
S	1.23%	0.90%									
Е	2.57%	0.77%									
W	1.10%	2.60%									
9	Sidney St & Tracey S	t									
N	0.90%	1.23%									
S	1.03%	0.90%									
Е	N/A	N/A									
W	N/A	N/A									

our Volumes (Counted	2014 Intersection							
g Exiting	Approach							
ell Blvd	S							
N 303 266								
464	S							
565	E							
305	W							
acey St	S							
589	N							
428	S							
100	E							
47	W							
2 // 200								

2031 Intersection	n AM Peak Hour Volu	umes (Estimated)
Approach	Entering	Exiting
;	Sidney St & Bell Blvo	d
N	375	369
S	739	556
E	622	660
W	429	510
:	Sidney St & Tracey S	t
N	568	752
S	676	513
E	#VALUE!	#VALUE!
W	#VALUE!	#VALUE!
2011-2031 Growth Fact	ors Applied	

PM Peak Volumes

		Sidney St & Bell Blvd Count July 9 2014											
	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
AM Peak	56	199	89	175	175	24	82	186	311	55	200	48	
PM Peak	119	264	139	329	300	79	94	291	395	50	261	44	
Factor	2.13	1.33	1.56	1.88	1.71	3.29	1.15	1.56	1.27	0.91	1.31	0.92	

		Sidney St & Bell Blvd Count July 10 2014											
	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
AM Peak	57	224	82	171	178	23	74	186	324	47	189	32	
PM Peak	106	311	140	360	274	75	99	300	414	43	261	56	
Factor	1.86	1.39	1.71	2.11	1.54	3.26	1.34	1.61	1.28	0.91	1.38	1.75	

Suggested	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Factors	2.0	1.4	1.6	2.0	1.6	3.3	1.2	1.6	1.3	0.9	1.4	1.5

			2031 Estimated Turning Movement Volumes Sidney St & Bell Blvd												
		EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
AMI	Peak	82	247	100	244	333	43	118	256	364	70	230	75		
PM I	Peak	164	346	160	488	533	142	142	410	474	63	322	113		

2031 AM PEAK HOUR

origin\dest	Sydney N	Bell E	Sydney S	Bell W		total
Sydney N	0	55	200	48	1	304
Bell E	24	0	175	175	1	375
Sydney S	186	311	0	82	1	580
Bell W	56	199	89	0	1	345
	1	1	1	1	0	4
total	267	566	465	306	4	1608

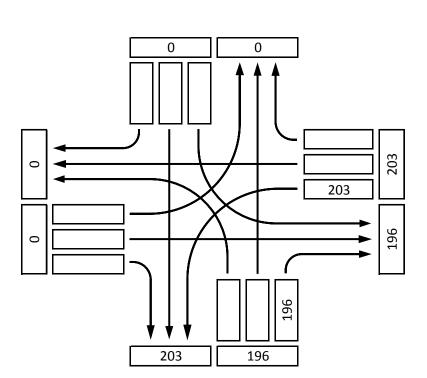
Instructions:

- enter data in yellow areas only
- use Original or Balanced totals as needed
- click on Reset Factors
- alternately click on Row Factor and Column Factor until the % error and total of individual errors (see blue values) are both as low as needed

	factor	1.016673	0.8663088	0.7837847	1.0691924	0.455625				
factor	origin\dest _	Sydney N	Bell E	Sydney S	Bell W	0	total	goal	err	NEW
1.46462	Sydney N	0	70	230	75	1	376	375	0.002667	1.461
1.781541	Bell E	43	0	244	333	1	621	622	0.001608	1.784
1.351257	Sydney S	256	364	0	118	1	739	739	0	1.351
1.433444	Bell W	82	247	100	0	1	430	429	0.002331	1.430
0.632813	0	1	1	0	1	0	3	3	0	0.633
	total	382	682	574	527	4	2169 / 2169	_		
	goal	375	671	565	519	3		2133 / 2168	0.000461	
	err	0.018667	0.0163934	0.0159292	0.0154143	0.333333		0.016878	Error is abou	t 1 percent
	NEW	0.998	0.852	0.771	1.053	0.342	'			

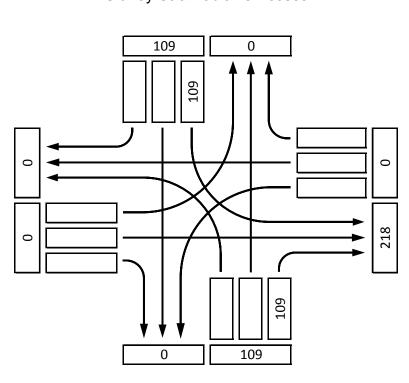
Warning: Goal sums off by 35, cannot converge!

Total of individual movement errors: 39 (0.9)

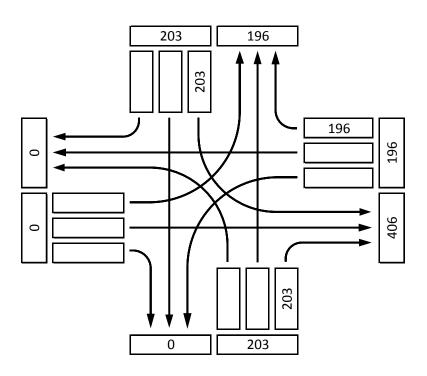

(0.9142% of enter+exit)

Original Row totals	369	660	556	510	3	2098	Average
Col totals	375	622	739	429	3	2168	2133
Balanced Row totals	375	671	565	519	3	2133	
Col totals	369	612	727	422	3	2133	

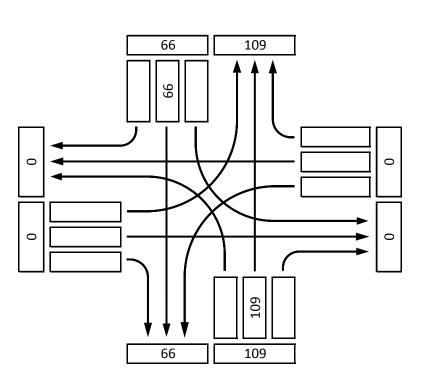
Loblaws Traffic Generation

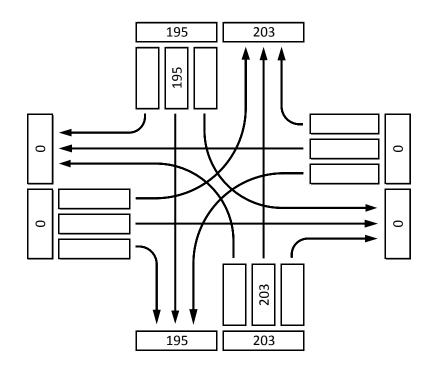

AM Peak Hour

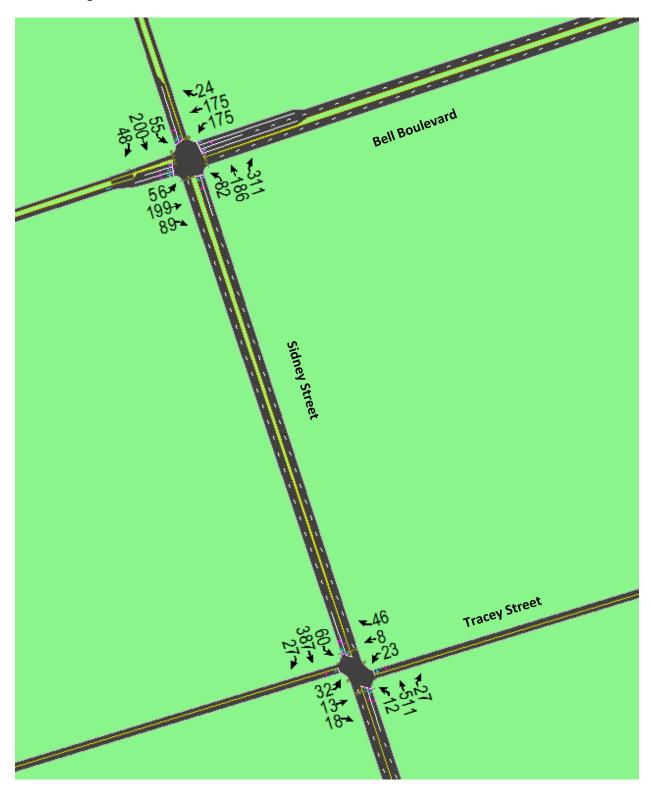
PM Peak Hour

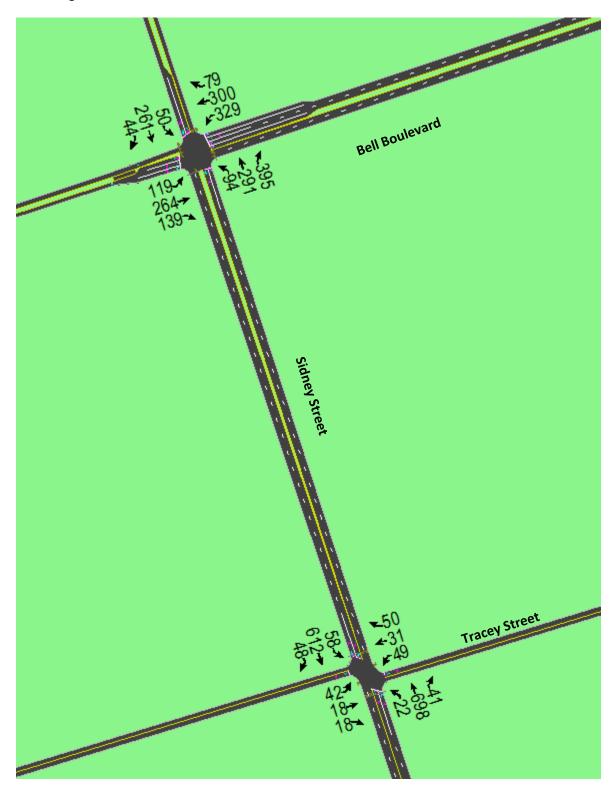


Sidney St & Bell Blvd

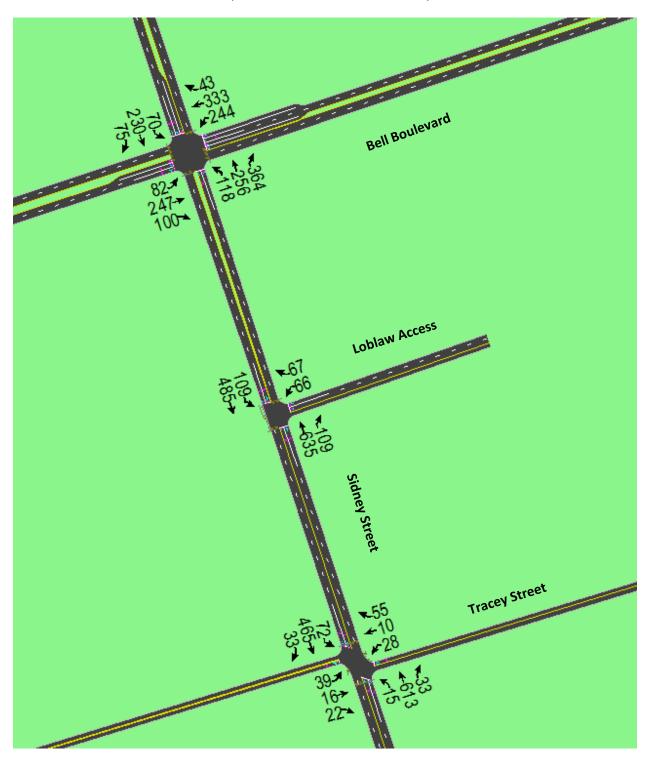

Sidney St & Loblaws Access


Sidney St & Loblaws Access

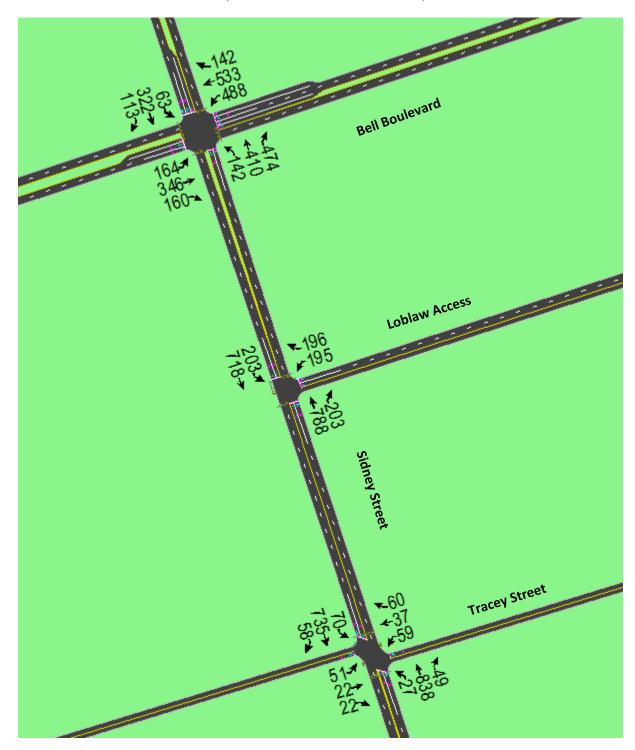

Sidney St & Tracey St

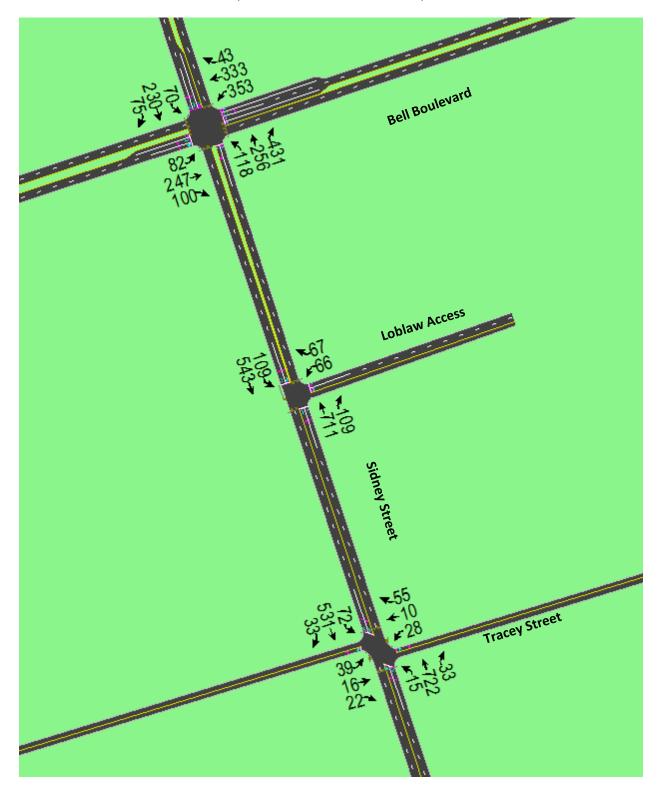


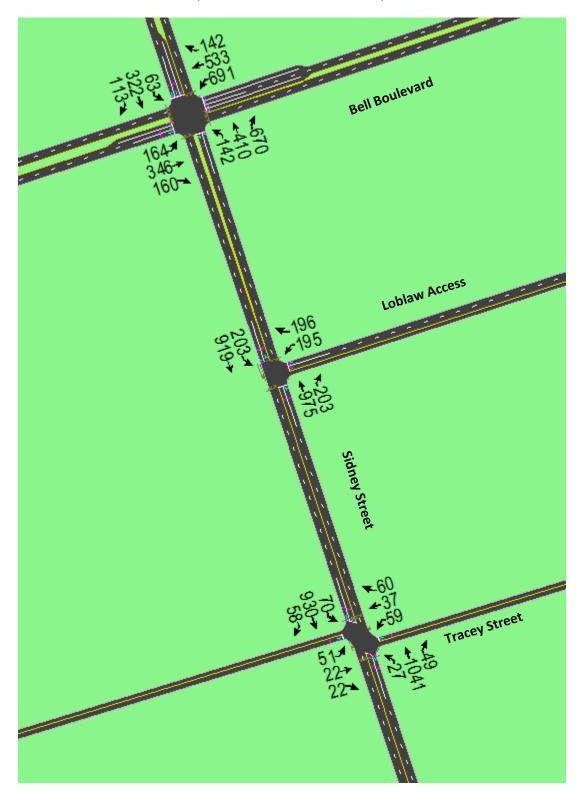
Sidney St & Tracey St



2014 Existing Traffic – AM Peak Hour




2031 Future Traffic – AM Peak Hour (Loblaw traffic included in EMME)


2031 Future Traffic – PM Peak Hour (Loblaw traffic included in EMME)

2031 Future Traffic – AM Peak Hour (Loblaw traffic added to EMME)

2031 Future Traffic – PM Peak Hour (Loblaw traffic added to EMME)

3027 Harvester Road, Suite 400 Burlington, ON L7N 3G7 CANADA T. 289.288.0287 F. 289.288.0285

www.cima.ca

3027 Harvester Road, Suite 400 Burlington, ON L7N 3G7 CANADA T. 289.288.0287 F. 289.288.0285

www.cima.ca